Długość telomerów – nowy biomarker w medycynie
Więcej
Ukryj
1
Instytut Medycyny Pracy i Zdrowia Środowiskowego, Zakład Szkodliwości Chemicznych i Toksykologii Genetycznej w Sosnowcu, Kierownik Zakładu: prof. dr hab. n. med. A. Sobczak
Autor do korespondencji
Agnieszka Kozłowska
Zakład Szkodliwości Chemicznych i Toksykologii Genetycznej Pracownia Toksykologii Genetycznej Instytut Medycyny Pracy i Zdrowia Środowiskowego
ul. Kościelna 13; 41-200 Sosnowiec
tel. 32 6341194; fax. 32 266 11 24
Med Srod. 2015;18(4):7-13
SŁOWA KLUCZOWE
STRESZCZENIE
Szereg szkodliwych czynników zewnętrznych w środowisku i w miejscu pracy oddziałuje na nasze zdrowie i życie. Biomarkery są narzędziem umożliwiającym pomiar takich oddziaływań i ich skutków w organizmie. Obecnie wśród nowych biomarkerów molekularnych wykorzystywanych w monitoringu biologicznym, medycynie i diagnostyce możemy wyróżnić długość telomerów, zmiany epigenetyczne, mutacje i zmiany w aktywności genów. Telomery pełnią rolę zegara molekularnego odmierzającego długość życia komórki a tym samym starzenia się organizmu, powstawania uszkodzeń, rozwijania chorób i nowotworzenia. Długość telomerów uzależniona jest od szeregu mechanizmów zachodzących podczas procesu replikacji oraz od aktywności telomerazy. Coraz częściej długość telomerów jest wykorzystywana jako biomarker wrażliwości lub ekspozycji.
W niniejszej publikacji poruszono aspekt długości telomerów jako biomarkera starzenia się komórki, stresu oksydacyjnego, markera wielu chorób oraz zaprezentowano wykorzystanie jako markera ekspozycji środowiskowej i zawodowej.
A number of xenobiotics in the environment and workplace influences on our health and life. Biomarkers are tools for measuring such exposures and their effects in the organism. Nowadays, telomere length, epigenetic changes, mutations and changes in gene expression pattern have become new molecular biomarkers. Telomeres play the role of molecular clock, which influences on expectancy of cell life and thus aging, the formation of damages, development diseases and carcinogenesis. The telomere length depends on mechanisms of replication and the activity of telomerase. Telomere length is currently used as a biomarker of susceptibility and/or exposure. This paper describes the role of telomere length as a biomarker of aging cells, oxidative stress, a marker of many diseases including cancer, and as a marker of environmental and occupational exposure.
FINANSOWANIE
Projekt został sfinansowany ze środków Narodowego Centrum Nauki przyznanych na podstawie decyzji nr DEC-2011/03/D/NZ7/05018.
REFERENCJE (78)
2.
Kapka-Skrzypczak L., Cyranka M., Kruszewski M., i in.: Środki ochrony roślin a zdrowie rolników-biomarkery oraz możliwości ich wykorzystania do oceny ekspozycji na pestycydy. Med. Ogólna i Nauki o Zdr., 2011; 17, 1: 28-32.
3.
Jakubowski M.: Monitoring biologiczny narażenia na czynniki toksyczne. Med. Pracy, 2004; 55, 1: 13-18.
4.
Silins I., Hogberg J.: Combined toxic exposures and human health: biomarkers of exposure and effect. Int. J. Environ. Res. Public Health, 2011; 8: 629-647.
5.
Bukowska B.: Addukty hemoglobiny jako biomarkery narażenia człowieka na wybrane ksenobiotyki. Postępy Hig. Med. Dośw., 2015; 69: 668-680.
6.
Wysoczańska B.: Zachowanie długości telomerów. Postępy Hig. Med. Dośw., 2013; 67: 1319-1330.
7.
Strimbu K., Tavel J.A.: What are Biomarkers?. Curr Opin HIV AIDS, 2010; 5, 6: 463-466.
8.
Śpiewak M., Kruk M.: Biomarkery w ostrych zespołach wieńcowych. Postępy w Kardiologii Interwencyjnej, 2008; 4, 4, 14: 183-187.
9.
Kozubek M., Długosz A., Pawlik K.: Zastosowanie technik PCR w toksykologii. Postępy Hig. Med. Dośw., 2010; 64: 482-489.
10.
Kowalska A., Kowalik A.: Telomer i telomeraza w onkogenezie. Współczesna Onkologia, 2006; 10, 10: 485-496.
11.
Kowalska M., Lipińska M., Romaniuk A., i in.: Telomeraza jako cel terapii przeciwnowotworowej. Diagn. Lab., 2014; 50, 2: 159-167.
12.
Bielak-Żmijewska A., Grabowska W., Przybylska D.: Rola starzenia komórkowego w starzeniu organizmu i chorobach związanych z wiekiem. Postępy Biochemii, 2014; 60, 2: 147-160.
13.
Neidle S., Parkinson G.N.: The structure of telomeric DNA. Current Opinion in Structural Biology, 2003; 13: 275-283.
14.
Lu W., Zhang Y., Liu D., i in.: Telomeres – structure, function, and regulation. Experimental Cell Research 2013; 319: 133-141.
15.
Stewart J.A., Chaiken M.F., Wang F., i in.: Maintaining the end: Roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat Res., 2012; 730, 2: 12-19.
16.
Greider C.W.: Telomeres do D-loop-T-loop. Cell, 1999; 97: 419-422.
17.
Griffith J.D., Comeau L., Rosenfield S., i in.: Mammalian telomeres end in a large duplex loop. Cell, 1999; 97: 503-514.
18.
Blasco M.A.: Telomere length, stem cells and aging. Nature chemical biology, 2007; 3: 640-649.
19.
de Lange T.: Shelterin: the protein complex that shapes and safeguards human telomneres. Gene and Development, 2005; 19, 18: 2100-2110.
20.
Mosieniak G., Strzeszewska A.: Rola starzenia komórkowego w kancerogenezie i terapii przeciwnowotworowej. Postępy Biochemii, 2014; 60, 2: 194-206.
21.
Sampathi S., Chai W.: Telomere replication: poised but puzzling. Cell. Mol. Med., 2011; 15, 1: 3-13.
22.
Broccoli D., Young J.W., de Lange T.: Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. USA, 1995; 92: 9082-9086.
23.
Osterhage J.L., Friedman K.L.: Chromosome end maintenance by telomerase. Journal of biological chemistry, 2009; 284: 16061-16065.
24.
Cifuentes-Rojas C., Shippen E.D.: Telomerase Regulation. Mutat Res., 2012; 1, 730, 1-2: 20-27.
25.
López-Otín C., Blasco A.M., Partridge L., i in.: The Hallmarks of Aging Cell, 2013; 153, 6: 1194-1217.
26.
Aubert G., Lansdorp P.M.: Telomeres and aging. Physiol. Rev., 2008; 88: 557-579.
27.
Cawthon M.R., Smith R.K., O’Brien E., i in.: Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet., 2003; 361: 393-395.
28.
Murnane J.P.: Telomere dysfunction and chromosome instability. Mutat. Res., 2012; 730: 28-36.
29.
Muraki K., Nyhan K., Han L., i in.: Mechanisms of telomere loss and their consequences for chromosome instability. Front. Oncol., 2012; 2: 135.
30.
Hayflick L.: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res., 1965; 37: 614-636.
31.
Shalev I., Entringer S., Wadhwa P.D., i in.: Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology, 2013; 38: 1835-1842.
32.
Hirai Y., Masutomi K., Ishikawa F.: Kinetics of DNA replication and telomerase reaction at a single-seeded telomere in human cells. Genes Cells, 2012; 17: 186-204.
33.
Xu L., Li S., Stohr B.A.: The role of telomere biology in cancer. Annu. Rev. Pathol., 2013; 8: 49-78.
34.
Ramunas J., Yakubov E., Brady J.J i in.: Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB Journal, 2015; 29, 5: 1930-1939.
35.
Alster O., Korwek Z.: Znaczniki starzenia komórkowego. Postępy Biochemii, 2014; 60, 2: 138-146.
36.
Kazanowska B., Mikołajewska A., Reich A., i in.: Telomery i aktywność telomerazy w komórkach prawidłowych oraz w komórkach nowotworowych. Adv. Clin. Exp. Med., 2003; 12, 1: 87-95.
37.
von Zglinicki T.: Oxidative stress shortens telomeres. Trends Biochem Sci., 2002; 27: 339-344.
38.
von Zglinicki T., Saretzki G., Docke W., i in.: Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res., 1995; 220: 186-193.
39.
Gao B., Li K., Wei Y.Y., i in.: Zinc finger protein 637 protects cells against oxidative stress-induced premature senescence by mTERT-mediated telomerase activity and telomere maintenance. Cell Death & Disease, 2014; 5: e1334.
40.
Houben J.M.J., Moonen H.J.J., Schooten F.J., i in.: Telomere length assessment: biomarker of chronic oxidative stress? Free Radic. Biol. Med., 2008; 44: 235–246.
41.
Hornsby P.J.: Short telomeres: cause or consequence of aging? Aging Cell, 2006; 5: 577-578.
42.
Pawelec K.: Krótkie telomery czynnikiem prognostycznym w leczeniu nabytej anemii aplastycznej. Postępy Nauk Med., 2014; XXVII, 4: 288-291.
43.
Chaber R., Reich A., Kazanowska B., i in.: Aktywność telomerazy i długość telomerów w nowotworach złośliwych u dzieci. Adv. Clin. Exp. Med., 2003; 12, 4: 415-422.
44.
Matysiak M., Karp M., Kapka – Skrzypczak L.: Nowe markery prognostyczne przewlekłej białaczki limfocytowej. Hygeia. Public Health, 2014; 49, 3: 435-441.
45.
McGrath M., Wong J.Y.Y., Michaud D., i in.: Telomere length, cigarette smoking and bladder cancer risk in men and women. Cancer Epidemiol Prev., 2007; 16, 4: 815-819.
46.
Broberg K., Björk J., Paulsson K., i in.: Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis, 2005; 26, 7: 1263-71.
47.
Seow W.J., Cawthon R.M., Purdue M.P., i in.: Telomere length in white blood cell DNA and lung cancer: a pooled analysis of three prospective cohorts. Cancer Res., 2014; 74: 4090-4098.
48.
Willeit P., Willeit J., Mayr A., i in.: Telomere length and risk of incident cancer and cancer mortality. JAMA, 2010b; 304, 1: 69-75.
49.
Muller M., Rabelink T.J.: Telomere shortening: a diagnostic tool and therapeutic target for cardiovascular disease? Eur. Heart J., 2014; 35, 46: 3245-3247.
50.
Fyhrquist F., Saijonmaa O., Strandberg T.: The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol. 2013; 10, 5: 274-283.
51.
Testa R., Olivieri F., Sirolla C., i in.: Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med., 2011; 11, 1388-1394.
52.
Guan J.Z., Guan W.P., Maeda T., i in: Analysis of telomere length and subtelomeric methylation of circulating leukocytes in women with Alzheimer’s disease. Aging Clin. Exp. Res., 2013; 25, 1: 17-23.
53.
Moverare-Skrtic S., Johansson P., Mattsson N., i in.: Leukocyte telomere length (LTL) is reduced in stablemild cognitive impairment but low LTL is not associated with conversion to Alzheimer’s disease: a pilot study. Exp. Gerontol., 2012; 47, 2: 179-182.
54.
Honig L.S., Kang M.S., Schupf N., i in.: Association of shorter leukocytes telomere repeat length with dementia and mortality. Arch. Neurol., 2012; 69, 10: 1332-1339.
55.
Li Z., Tang J., Li H., i in.: Shorter telomere length in peripheral blood leukocytes is associated with childhood autism. Sci. Rep., 2014; 17, 4: 7073.
56.
Revesz D., Milaneschi Y., Verhoeven J.E., i in.: Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J. Clin. Endocrinol. Metab., 2014; 99, 12: 4607-4615.
57.
Willeit P., Raschenberger J., Heydon E.E., i in.: Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLOS ONE, 2014; 9, 11: e1 12483.
58.
Willeit P., Willeit J., Brandstatter A., i in.: Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol., 2010a; 30: 1649-1656.
59.
Stuart B.D., Lee J.S., Kozlitina J., i in.: Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir. Med., 2014; 2, 7: 557-565.
60.
Russo A., Modica F., Guarrera S., i in.: Shorter leukocyte telomere length is independently associated with poor survival in patients with bladder cancer. Cancer Epidemiol. Biomarkers Prev., 2014; 23, 11: 2439-2446.
61.
Chen Y., Qu F., He X., i in.: Short leukocyte telomere length predicts poor prognosis and indicates altered immune functions in colorectal cancer patients. Ann. Oncol., 2014; 25: 869-876.
62.
Ghosh S., Feingold E., Chakraborty S., i in.: Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on Down syndro me birth. Hum. Genet., 2010; 127, 4: 403-409.
63.
Langie S., Koppen G., Desaulniers D., i in.: Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis, 2015; 36, 1: 61-88.
64.
Zhang X., Lin S., Funk W.E., i in.: Environmental and occupational exposure to chemicals and telomere length in human studies. Occup. Environ. Med., 2013; 70, 10: 743-749.
65.
Hoxha M., Dioni L., Bonzini M., i in.: Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ. Health, 2009; 8: 41.
66.
Dioni L., Hoxha M., Nordio F., i in.: Effects of short-term exposure to inhalable particulate matter on telomere length, telomerase expression, and telomerase methylation in steel workers. Environmental Health Perspectives, 2011; 119, 5: 622-627.
67.
Wong J.Y., De Vivo I., Lin X., i in.: Cumulative PM (2.5) exposure and telomere length in workers exposed to welding fumes. J Toxicol Environ Health, 2014; 77, 8: 441-455.
68.
Salihu H.M., Pradhan A., King L., i in.: Impact of intrauterine tobacco exposure on fetal telomere length. Am. J. Obstet. Gynecol., 2014; 211, 1: e1-1.e8.
69.
Pawlas N., Płachetka A., Kozłowska A., i in.: Telomere length in children environmentally exposed to low-to-moderate levels of lead. Toxicology and Applied Pharmacology, 2015; 287: 111-118, doi: 10.1016/j.taap.2015.05.005.
70.
Andreotti G., Hoppin J., Savage S., i in.: Pesticide use and relative telomere length in the Agricultural Health Study. Occup Environ Med., 2014; 71: A14-A15.
71.
Pavanello S., Pesatori A.C., Dioni L., i in.: Shorter telomere lenght in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis, 2010; 31:216-221.
72.
Li H., Jönsson B.A., Lindh C.H., i in.: N-nitrosamines are associated with shorter telomere length. Scand J Work Environ Health, 2011; 37, 4: 316-324.
73.
Wu Y., Liu Y., Ni N., i in.: High lead exposure is associated with telomere length shortening in Chinese battery manufacturing plant workers. Occup. Environ. Med., 2012; 69, 557-563.
74.
Pawlas N., Płachetka A., Kozłowska A., i in.: Telomere length, telomerase expression and oxidative stress in lead smelters. Toxicology and Industrial Health, e-pub doi:10.1177/0748233715601758.
75.
Jacobus J.A., Flor S., Klingelhutz A., i in.: 2-(4’-chlorophenyl)-1,4-benzoquinone increases the frequency of micronuclei and shortens telomeres. Environ Toxicol Pharmacol., 2008; 25, 2: 267-272.
76.
Li H., Engstrom K., Vahter M., i in.: Arsenic exposure through drinking water is associated with longer telomeres in peripheral blood. Chem. Res. Toxicol., 2012; 25: 2333-2339.
77.
Bassig B.A., Zhang L., Cawthon R.M., i in.: Alterations in leukocyte telomere length inworkers occupationally exposed to benzene. Environ. Mol. Mutagen., 2014; 55: 673-678.
78.
Shin J.Y., Choi Y.Y., Jeon H.S., i in.: Low-dose persistent organic pollutants increased telomere length in peripheral leukocytes of healthy Koreans. Mutagenesis, 2010; 25: 511-516.