PL EN
PRACA POGLĄDOWA
Narażenie środowiskowe na formaldehyd i jego wpływ na zdrowie człowieka
 
Więcej
Ukryj
1
1st Military Clinical Hospital, Lublin, Poland
 
2
John Paul II Specjalist Hospital, Kraków, Poland
 
3
5th Military Hospital with Polyclinic, Kraków, Poland
 
 
Autor do korespondencji
Wojciech Mazurkiewicz   

1 Wojskowy Szpital Kliniczny z Polikliniką SPZOZ w Lublinie, al. Racławickie 23, 20-049, Lublin, Polska
 
 
Med Srod. 2024;27(2):41-45
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Formaldehyd jest powszechnie występującą w środowisku substancją toksyczną, powstającą zarówno w sposób naturalny, jak i w wyniku działalności człowieka. Ze względu na powszechne zastosowanie może stanowić zagrożenie dla znacznej części populacji. Celem niniejszego badania była analiza badań naukowych dotyczących środowiskowego narażenia na formaldehyd oraz jego wpływu na zdrowie człowieka.

Opis stanu wiedzy:
Stężenie formaldehydu w powietrzu w pomieszczeniach i budynkach osiąga znacznie wyższe wartości niż na otwartej przestrzeni. Najczęściej dostaje się on do organizmu człowieka przez drogi oddechowe, rzadziej przez skórę. Formaldehyd może być jedną z przyczyn syndromu chorego budynku lub niespecyficznych objawów zdrowotnych związanych z budynkiem. Zawodowe narażenie na formaldehyd najczęściej dotyczy pracowników służby zdrowia oraz osób pracujących w fabrykach, a także zatrudnionych w branży budowlanej i zakładach przemysłu odzieżowego. Wyniki analizy badań sugerują, że narażenie na formaldehyd może wiązać się z wyższym ryzykiem zachorowania na raka, zwłaszcza raka jamy nosowo-gardłowej, i białaczkę. Narażenie na formaldehyd może również powodować rozwój astmy, zarówno u dzieci, jak i dorosłych, a także niektóre choroby mózgu.

Podsumowanie:
Wiele osób, ze względu na wykonywany zawód, jest narażonych na stężenia formaldehydu przekraczające dopuszczalne poziomy. Może stać się to przyczyną rozwoju licznych chorób. Odpowiednia edukacja pracowników, zapewnienie im środków ochronnych i wprowadzenie systemów zapobiegania narażeniu na formaldehyd może zmniejszyć ryzyko wystąpienia negatywnych skutków zdrowotnych.


Introduction and objective:
Formaldehyde is a common toxic substance in the environment, formed both naturally and as a result of human activity. Due to its widespread use, it can pose a threat to a significant portion of the population. The aim of this study was to analyze scientific research on environmental exposure to formaldehyde and its effects on human health.

Abbreviated description of the state of knowledge:
The concentration of formaldehyde in indoor air of buildings reaches much higher values than in the open air. It most often enters the human body through the respiratory tract, less often through the skin. Formaldehyde can be one of the causes of sick building syndrome or non-specific building-related health symptoms. Occupational exposure to formaldehyde most often affects workers in the health care, factory, construction and garment industries. The results of the study analysis suggest that formaldehyde exposure may be associated with a higher risk of cancer, especially nasopharyngeal cavity cancer and leukemia. Formaldehyde exposure can also cause the development of asthma in both children and adults, as well as some brain diseases.

Summary:
Many workers, by virtue of their occupation, are exposed to concentrations of formaldehyde that exceed permissible levels. This can become the cause of the development of many diseases. Adequate education of workers, provision of protective measures, and exposure prevention systems can reduce the risk of adverse health effects.

REFERENCJE (48)
1.
Bernardini Letícia, Barbosa Eduardo, Feiffer Charão Mariele, et al. Formaldehyde Toxicity Reports from in Vitro and in Vivo Studies: A Review and Updated Data. Drug Chem Toxicol. 2022;45(3):972–984. doi:10.1080/01480545.2020.
 
2.
Dugheri S, Massi D, Mucci N, et al. Exposure to Airborne Formaldehyde: Sampling and Analytical Methods—A Review. Trends in Environmental Analytical Chemistry. 2021;29:e00116. doi:10.1016/j.teac.2021.e00116.
 
3.
Lui KH, Steven Sai Hang Ho, Peter K Louie, et al. Seasonal Behavior of Carbonyls and Source Characterization of Formaldehyde (HCHO) in Ambient Air. Atmospheric Environment. 2017;152:51–60. doi:10.1016/j.atmosenv.2016.12.004.
 
4.
European Chemicals Agency. Formaldehyde. https://echa.europa.eu/pl/subs... (access: 15.10.2023).
 
5.
Barbosa E, Dos Santos ALA, Peteffi GP, et al. Increase of global DNA methylation patterns in beauty salon workers exposed to low levels of formaldehyde. Environ Sci Pollut Res Int. 2019;26(2):1304–1314. doi:10.1007/s11356-018-3674-7.
 
6.
Gelbke Heinz-Peter, Harrie Buist, Ralf Eisert, et al. Derivation of Safe Exposure Levels for Potential Migration of Formaldehyde into Food. Food Chem Toxicol. 2019;132:110598. https://doi.org/10.1016/j.fct.....
 
7.
Kaden Debra A, Corinne Mandin, Gunnar Nielsen D, et al. Formaldehyde. In WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization; 2010.
 
8.
Zhang Q, Tian P, Zhai M, et al. Formaldehyde regulates vascular tensions through nitric oxide-cGMP signaling pathway and ion channels. Chemosphere. 2018;193:60–73. doi:10.1016/j.chemosphere.2017.11.013.
 
9.
Reingruber Hernán, Lucas Blas Pontel. Formaldehyde Metabolism and Its Impact on Human Health. Current Opinion in Toxicology. 2018;9:28–34. doi:10.1016/j.cotox.2018.07.001.
 
10.
Fasth IM, Ulrich NH, Johansen JD. Ten-year trends in contact allergy to formaldehyde and formaldehyde-releasers. Contact Dermatitis. 2018;79(5):263–269. doi:10.1111/cod.13052.
 
11.
Marchand C, Bulliot B, Le Calvé S, et al. Aldehyde measurements in indoor environments in Strasbourg (France). Atmospheric Environ. 2006;40(7):1336–1345. doi:10.1016/j.atmosenv.2005.10.027.
 
12.
Chiarella P, Tranfo G, Pigini D, et al. Is it possible to use biomonitoring for the quantitative assessment of formaldehyde occupational exposure? Biomark Med. 2016;10(12):1287–1303. doi:10.2217/bmm-2016-0146.
 
13.
Nielsen GD, Larsen ST, Wolkoff P. Recent trend in risk assessment of formaldehyde exposures from indoor air. Arch Toxicol. 2013;87(1):73–98. doi:10.1007/s00204-012-0975-3.
 
14.
World Health Organization. WHO guidelines for indoor air quality. Selected pollutants. WHO Regional Office for Europe; 2010.
 
15.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. FORMALDEHYDE. International Agency for Research on Cancer; 2012.
 
16.
Szot W, Grochowski J. Dom jako środowisko życia rodziny. Państwo i Społeczeństwo. 2005;3:59–67.
 
17.
Sarah Boslaugh. Sick Building Syndrome (SBS). Britannica. https://www.britannica.com/sci.... (access: 13.12.2023r.).
 
18.
Lee S, Park DJ, Yoon J, et al. Formaldehyde Treatment Using Overexpressed Aldehyde Dehydrogenase 6 from Recombinant Saccharomyces cerevisiae. J Nanosci Nanotechnol. 2018;18(4):2979–2985. doi:10.1166/jnn.2018.14310.
 
19.
Miyajima E, Tsunoda M, Sugiura Y, et al. The Diagnosis of Sick House Syndrome: the Contribution of Diagnostic Criteria and Determination of Chemicals in an Indoor Environment. Tokai J Exp Clin Med. 2015;40(2):69–75.
 
20.
Lee MH, Lee BH, Shin HS, Lee MO. Elevated Levels of PDGF Receptor and MDM2 as Potential Biomarkers for Formaldehyde Intoxication. Toxicol Res. 2008 Mar;24(1):45–49. doi:10.5487/TR.2008.24.1.045.
 
21.
Sahlberg B, Gunnbjörnsdottir M, Soon A, Jogi R, Gislason T, Wieslander G, Janson C, Norback D. Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Sci Total Environ. 2013 Feb 1;444:433–40. doi:10.1016/j.scitotenv.2012.10.114.
 
22.
Chung-Yen Lu, Meng-Chuan Tsai, Chih-Hsin Muo, et al. Personal, Psychosocial and Environmental Factors Related to Sick Building Syndrome in Official Employees of Taiwan. Int J Environ Res Public Health. 2017;15(1):7. https://doi.org/10.3390/ijerph....
 
23.
Ohmichi K, Komiyama M, Matsuno Y, et al. Formaldehyde exposure in a gross anatomy laboratory--personal exposure level is higher than indoor concentration. Environ Sci Pollut Res Int. 2006;13(2):120–4. doi:10.1065/espr2005.06.265.
 
24.
Xu W, Stewart EJ. A comparison of engineering controls for formaldehyde exposure during grossing activities in health care anatomic pathology laboratories. J Occup Environ Hyg. 2016;13(7):529–537.
 
25.
Orianne Dumas, Aleta S Wiley, Catherine Quinot, et al. Occupational Exposure to Disinfectants and Asthma Control in U.S. Nurses. Eur Respir J. 2017;50(4):1700237. https://doi.org/10.1183/139930....
 
26.
Yahyaei E, Majlesi B, Naimi Joubani M, et al. Occupational exposure and risk assessment of formaldehyde in the pathology departments of hospitals. Asian Pac J Cancer Prev. 2020;21(5):1303–1309. doi:10.31557/APJCP.2020.21.5.1303.
 
27.
Reinhardt TE, Ottmar RD. Baseline measurements of smoke exposure among wildland firefighters. J Occup Environ Hyg. 2004;1(9):593–606. doi:10.1080/15459620490490101.
 
28.
Siew SS, Kauppinen T, Kyyrönen P, et al. Occupational exposure to ood dust and formaldehyde and risk of nasal, nasopharyngeal, and lung cancer among Finnish men. Cancer Manag Res. 2012;4:223–32. doi:10.2147/CMAR.S30684.
 
29.
Barbosa E, Dos Santos ALA, Peteffi GP, et al. Increase of global DNA methylation patterns in beauty salon workers exposed to low levels of formaldehyde. Environ Sci Pollut Res Int. 2019;26(2):1304–13.
 
30.
Cammalleri V, Pocino RN, Marotta D, et al. Occupational scenarios and exposure assessment to formaldehyde: A systematic review. Indoor Air. 2022;32(1):e12949. doi:10.1111/ina.12949.
 
31.
Mundt KA, Gallagher AE, Dell LD, Natelson EA, Boffetta P, Gentry PR. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit Rev Toxicol. 2017 Aug;47(7):592–602. doi:10.1080/10408444.2.017.1301878. Epub 2017 May 2. Erratum in: Crit Rev Toxicol. 2017;47(7):i.
 
32.
Mundt KA, Gallagher AE, Dell LD, et al. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit Rev Toxicol. 2017;47(7):592–602. doi:10.1080/10408444.2017.1301878.
 
33.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum. 2006;88:1–478.
 
34.
World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. WHO; 2020. 31. who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. (access: 10.11.2023).
 
35.
Nielsen GD, Larsen ST, Wolkoff P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol. 2017;91(1):35–61. doi:10.1007/s00204-016-1733-8.
 
36.
Park J, Yang HS, Song MK, et al. Formaldehyde exposure induces regulatory T cell-mediated immunosuppression via calcineurin-NFAT signalling pathway. Sci Rep. 2020;10(1):17023. doi:10.1038/s41598-020-72502-9.
 
37.
Awan KH, Hegde R, Cheever VJ, et al. Oral and pharyngeal cancer risk associated with occupational carcinogenic substances: Systematic review. Head Neck. 2018 Dec;40(12):2724–2732. doi:10.1002/hed.25486.
 
38.
Binazzi A, Ferrante P, Marinaccio A. Occupational exposure and sinonasal cancer: a systematic review and meta-analysis. BMC Cancer. 2015 Feb 13;15:49. doi:10.1186/s12885-015-1042-2.
 
39.
Kwak K, Paek D, Park JT. Occupational exposure to formaldehyde and risk of lung cancer: A systematic review and meta-analysis. Am J Ind Med. 2020;63(4):312–327. doi:10.1002/ajim.23093.
 
40.
Catalani S, Donato F, Madeo E, et al. Occupational exposure to formaldehyde and risk of non hodgkin lymphoma: a meta-analysis. BMC Cancer. 2019;19(1):1245. doi:10.1186/s12885-019-6445-z.
 
41.
Zhang L, Tang X, Rothman N, et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomarkers Prev. 2010;19(1):80–8. doi:10.1158/1055-9965.EPI-09-0762.
 
42.
Van der Laan L, Cardenas A, Vermeulen R, et al. Epigenetic aging biomarkers and occupational exposure to benzene, trichloroethylene and formaldehyde. Environ Int. 2022;158:106871. doi:10.1016/j.envint.2021.106871.
 
43.
Mundt KA, Gallagher AE, Dell LD, et al. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit Rev Toxicol. 2017;47(7):592–60.
 
44.
Allegra A, Spatari G, Mattioli S, et al. Formaldehyde Exposure and Acute Myeloid Leukemia: A Review of the Literature. Medicina (Kaunas). 2019;55(10):638. doi:10.3390/medicina55100638.
 
45.
World Health Organization: Asthma. https://www.who.int/news-room/.... (access: 20.11.2023).
 
46.
Lam J, Koustas E, Sutton P, et al. Exposure to formaldehyde and asthma outcomes: A systematic review, meta-analysis, and economic assessment. PLoS One. 2021;16(3):e0248258. doi:10.1371/journal.pone.0248258.
 
47.
Duan J, Kang J, Qin W, et al. Exposure to formaldehyde and diisononyl phthalate exacerbate neuroinflammation through NF-κB activation in a mouse asthma model. Ecotoxicol Environ Saf. 2018;163:356–364. doi:10.1016/j.ecoenv.2018.07.089.
 
48.
Letellier N, Gutierrez LA, Pilorget C, et al. Association Between Occupational Exposure to Formaldehyde and Cognitive Impairment. Neurology. 2022;98(6):e633-e640. doi:10.1212/WNL.0000000000013146.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top