PRACA POGLĄDOWA
Mutagenne i kancerogenne wielopierścieniowe węglowodory aromatyczne (WWA) w żywności – występowanie, wpływ na zdrowie człowieka i metody oceny narażenia
Więcej
Ukryj
1
Medical University of Silesia, Katowice, Poland
2
Silesian Technical University, Gliwice, Poland
Med Srod. 2023;26(1-2):8-15
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Wielopierścieniowe węglowodory aromatyczne (WWA) powstają podczas niecałkowitego spalania materiałów organicznych. Są wszechobecne w środowisku, dlatego jesteśmy z nimi w stałym kontakcie.
Cel pracy:
Celem artykułu jest porównanie różnych często spożywanych rodzajów żywności ze względu na zawartość WWA, a także omówienie wpływu tych związków na organizm człowieka, z uwzględnieniem metod oceny narażenia człowieka na WWA.
Opis stanu wiedzy:
Badania dowodzą, że głównymi czynnikami zanieczyszczenia żywności związkami z grupy WWA są procedury jej przetwarzania i metody obróbki termicznej, zwłaszcza procesy grillowania i smażenia. Międzynarodowa Agencja Badań nad Rakiem (IARC) sklasyfikowała wiele z tych związków jako prawdopodobnie rakotwórcze lub potencjalnie rakotwórcze, a jeden z nich, benzo[a]piren, jako rakotwórczy dla ludzi. Celem licznych prac opublikowanych w ostatnich latach było oznaczenie WWA w różnego rodzaju żywności. Monitoring biologiczny jest szeroko stosowany do oceny możliwego zagrożenia zdrowia człowieka po wpływem WWA. Skutki krótkotrwałego narażenia ludzi na te związki nie zostały dotychczas szczegółowo rozpoznane. Badania dowodzą jednak, że przewlekła ekspozycja na WWA ma działanie mutagenne, rakotwórcze i teratogenne na organizm człowieka.
Podsumowanie:
WWA są powszechnie spotykane w żywności. Obróbka cieplna wpływa na ich zawartość w pożywieniu. Związki te negatywnie wpływają na zdrowie człowieka. Wiedza na temat ich aktywności biologicznej jest ważna dla zdrowia społeczeństwa, a także dla rozwoju metod oceny narażenia na WWA.
Introduction:
Polycyclic aromatic hydrocarbons (PAHs) are formed during incomplete combustion of organic materials. They are ubiquitous in the environment; therefore, we are in constant contact with them.
Aim:
The purpose of this article is to compare different, often consumed, types of food due to their PAHs content, as well as to discuss the impact of these compounds on the human body, taking into account the methods for assessing human exposure to PAHs.
Abbreviated description of the state of knowledge:
It is indicated that processing procedures and cooking methods are the main factors of PAHs contamination of food. PAHs can get into food, especially during grilling and frying. The International Agency for Research, on Cancer (IARC) has classified many of these compounds as probably carcinogenic or possibly carcinogenic and one of them, benzo[a]pyrene, as carcinogenic to humans. In recent years, a lot of work has gone how to precisely and accurately quantify the PAHs that are present in food. Biological monitoring is widely used to assess the possible health risk. The effects of short-term human exposure are as well not yet clear. There are studies proving that chronic exposure to PAHs have a mutagenic, carcinogenic and teratogenic effects on the human body.
Summary:
PAHs are commonly found in food. Heat treatment affects the content of PAHs in food. PAHs negatively affect human health. Knowledge about biological activity of PAHs is important for a healthy society as well as the development of methods to assess exposure to PAHs.
REFERENCJE (77)
1.
Derafsh M, Matin N, Hassani A. A short review on polycyclic aromatic hydrocarbon contamination. Acta Hortic Regiotect. 2022;25(2):174–180.
https://doi.org/10.2478/ahr-20....
2.
Environment Agency. Polycyclic aromatic hydrocarbons (PAHs): sources, pathways and environmental data. Environment Agency, Bristol, October 2019.
https://consult.environment-ag... (access: 11.5.2023).
3.
Rusin M, Marchwińska-Wyrwał E. Zagrożenia zdrowotne związane ze środowiskowym narażeniem na wielopierścieniowe węglowodory aromatyczne (WWA). Med Srod. 2016;17(3):7–13.
4.
Sampaio GN, Guizellini GM, da Silva SA, et al. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int J Mol Sci. 2021;22(11):6010.
https://doi.org/10.3390/ijms22....
5.
Sahin S, Ulusoy HI, Alemdar S, et al. The presence of polycyclic aromatic hydrocarbons (PAHs) in grilled beef, chicken and fish by considering dietary exposure and risk assessment. Food Sci Anim Resour. 2020 Sep; 40(5):675–688.
https://doi.org/10.5851%2Fkosf....
6.
Cheng T, Chaousis S, Kodagoda Gamage SM, et al. Polycyclic Aromatic Hydrocarbons Detected in Processed Meats Cause Genetic Changes in Colorectal Cancers. Int J Mol Sci. 2021;22(20):10959.
https://doi.org/10.3390/ijms22....
7.
Khreis H, Kelly C, Tate J, et al. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ Int. 2017;100:1–31.
https://doi.org/10.1016/j.envi....
8.
Annavarapu RN, Kathi S. Cognitive disorders in children associated with urban vehicular emissions. Environ Pollut. 2016;208:74–78.
https://doi:10.1016/j.envpol.2....
9.
Deng Q, Lu C, Yu Y, et al. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir Med. 2016;121:67–73.
https://doi:10.1016/j.rmed.201....
10.
Alvarez-Pedrerol M, Rivas I, López-Vicente M, et al. Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school. Environ Pollut. 2017;231(0): 837–844.
https://doi:10.1016/j.envpol.2....
11.
Hasunuma H, Yamazaki S, Tamura K, et al. Association between daily ambient air pollution and respiratory symptoms in children with asthma and healthy children in western Japan. J Asthma. 2018;55(7):712–719.
https://doi:10.1080/02770903.2....
12.
Agus, BAP, Rajentran K, Selamat J, et al. Determination of 16 EPA PAHs in food using gas and liquid chromatography. J Food Compos Anal. 2023;116:105038.
https://doi.org/10.1016/j.jfca....
13.
Zelinkova Z, Wenzl T. The Occurrence of 16 EPA PAHs in food – A Review, Polycyl Aromat Comp. 2015;35(2–4):248–284, doi:10.1080/10406638.2014.918550.
14.
Polak-Śliwińska M, Paszczyk B, Śliwiński M. Evaluation of polycyclic aromatic hydrocarbons in smoked cheeses made in Poland by HPLC Method. Molecules. 2022;27(20):6909.
https://doi.org/10.3390/molecu....
15.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1–853.
16.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100:111–144.
17.
European Commission. European Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off J Eur Union. 2011;L215:4–8.
https://www.legislation.gov.uk....
18.
Jia J, Bi Ch, Zhang J, et al. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ Pollut. 2018;241:750–758. doi: 10.1016/j.envpol.2018.06.002.
19.
Kalteh S, Rastkari N, Shamsipour M, et al. Health risk assessment of polycyclic aromatic hydrocarbons via dietary intake of leafy vegetables. Int J Environ Anal Chem. 2022;102(18):6858–6873, doi:10.1080/03067319.2020.1817906.
20.
Li H, Zhu D, Lu X, et al. Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables. J Environ Sci Health A. 2018;53(2):116–123, doi:10.1080/10934529.2017.1377573.
22.
Balbino S, Repaijć M, Solarić T, et al. Oil Uptake and Polycyclic Aromatic Hydrocarbons (PAH) in Fried Fresh-Cut Potato: Effect of Cultivar, Anti-Browning Treatment and Storage Conditions. Agronomy. 2020;10(11):1773. doi:
https://doi.org/10.3390/agrono....
23.
Soceanu A, Dobrinas S, Popescu V. Levels of polycyclic aromatic hydrocarbons in toasted bread. Polycycl Aromat Comp. 2022;42(9):6112–6123.
https://doi.org/10.1080/104066....
25.
Ma JK, Li K, Li X, et al. Levels of polycyclic aromatic hydrocarbons in edible and fried vegetable oil: a health risk assessment study. Environ Sci Pollut Res Int. 2021;28(42):59784–59791. doi:10.1007/s11356-021-14755-z.
26.
Iwegbue CMA, Onyonyewoma UA, Bassey, FI, et al. Concentrations and Health Risk of Polycyclic Aromatic Hydrocarbons in Some Brands of Biscuits in the Nigerian Market. Hum Ecol Risk Assess. 2015;21(2):338–357. doi:10.1080/10807039.2014.916542.
27.
Kumari R, Chaturvedi P, Ansari NG, et al. Optimization and validation of an extraction method for the analysis of polycyclic aromatic hydrocarbons in chocolate candies. J Food Sci. 2012;77(1):T34–T40. doi:10.1111/j.1750-3841.2011.02488.x.
28.
Raters M, Matissek R. Quantitation of polycyclic aromatic hydrocarbons (PAH4) in cocoa and chocolate samples by an HPLC-FD method. J Agric Food Chem. 2014;62(44):10666–10671. doi:10.1021/jf5028729.
29.
Ciecierska M. Cocoa beans of different origins and varieties and their derived products contamination with polycyclic aromatic hydrocarbons. Food Chem. 2020;317:126408.
https://doi.org/10.1016/j.food....
30.
Alomirah H, Al-Zenki S, Al-Hooti S, et al. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 2011;22(12):2028–2035. doi:10.1016/j.foodcont.2011.05.024.
31.
Onopiuk A, Kołodziejczak K, Marcinkowska-Lesiak M, et al. Determination of polycyclic aromatic hydrocarbons using different extraction methods and HPLC-FLD detection in smoked and grilled meat products. Food Chem. 2022;373:131506.
https://doi.org/10.1016/j.food....
32.
Jira W, Ziegenhals K, Speer K. Gas chromatography-mass spectrometry (GC-MS) method for the determination of 16 European priority polycyclic aromatic hydrocarbons in smoked meat products and edible oils. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(6):704–713.
https://doi.org/10.1080/026520....
33.
Cordeiro T, Viegas O, Silva M, et al. Inhibitory effect of vinegars on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork. Meat Sci. 2020;167:108083.
https://doi.org/10.1016/j.meat....
34.
Neves TM, da Cunha DT, de Rosso VV, et al. Effects of seasoning on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in meats: A meta-analysis. Compr Rev Food Sci Food Saf. 2021;20(1):52–541. doi:10.1111/1541-4337.12650.
35.
Binello A, Cravotto G, Menzio J, Tagliapietra S. Polycyclic aromatic hydrocarbons in coffee samples: Enquiry into processes and analytical methods. Food Chem. 2021;344:128631.
https://doi.org/10.1016/j.food....
36.
Jimenez A, Adisa A, Woodham C, et al. Determination of polycyclic aromatic hydrocarbons in roasted coffee. J Environ Sci Health B. 2014;49(11):828–835. doi:10.1080/03601234.2014.938552.
37.
Ciecierska M, Derewiaka D, Kowalska J, et al. Effect of mild roasting on Arabica and Robusta coffee beans contamination with polycyclic aromatic hydrocarbons. J Food Sci Technol. 2019;56(2):737–745. doi:10.1007/s13197-018-3532-0.].
38.
Peng PL, Lee LH. Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review. Food Anal Method. 2022;15:1042–1061.
https://doi.org/10.1007/s12161....
39.
Sun Y, Yan K, Wu S, et al. Occurrence, spatial distribution and impact factors of 16 polycyclic aromatic hydrocarbons in milks from nine countries. Food Control. 2020;113:107197. doi:10.1016/j.foodcont.2020.107197.
40.
Yan K, Li W, Wu S. Dietary exposure and risk assessment of European Union priority (EU 15+1) polycyclic aromatic hydrocarbons from milks and milk powders in China. J Dairy Sci. 2022;105(8):6536–6547. doi:10.3168/jds.2021-21438].
41.
Klöslová Z, Drímal M, Balog K, et al. The relations between polycyclic aromatic hydrocarbons exposure and 1-OHP levels as a biomarker ofthe exposure. Cent Eur J Public Health. 2016;24(4):302–307.
http://dx.doi.org/10.21101/cej....
42.
Ciemniak A, Kuźmicz K, Rajkowska-Myśliwiec M, et al. Assessing the contamination levels of dried teas and their infusions by polycyclic aromatic hydrocarbons (PAHs). J Consum Prot Food Saf. 2019;14:263–274.
https://doi.org/10.1007/s00003....
43.
Paris A, Ledauphin J, Poinot P, et al. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environ Pollut. 2018;234:96–106.
https://doi:10.1016/j.envpol.2....
44.
Kang B, Lee BM, Shin HS. Determination of polycyclic aromatic hydrocarbon (PAH) content and risk assessment from edible oils in Korea. J Toxicol Environ Health A. 2014;77(22–24):1359–1371.
https://doi:10.1080/15287394.2....
45.
Ciecierska M, Obiedziński M. Polycyclic aromatic hydrocarbons in vegetable oils from unconventional sources. Food Control. 2014;2:1–9.
https://doi.org/10.1016/j.food....
46.
Radu C, Racovita Catinca Secuianu Maria D, Ciuca Florentina Israel-Roming. Effects of Smoking Temperature, Smoking Time, and Type of Wood Sawdust on Polycyclic Aromatic Hydrocarbon Accumulation Levels in Directly Smoked Pork Sausages. J Agric Food Chem. 2020;68(35):9530–9536.
https://doi:10.1021/acs.jafc.0....
47.
Alsadat Mirbod M, Hadidi M, Huseyn E, et al. Polycyclic aromatic hydrocarbon in smoked meat sausages: effect of smoke generation source, smoking duration, and meat content. Food Sci Technol (Campinas). 2022;42.
https://doi.org/10.1590/fst.60....
48.
L Duedahl-Olesen, M A Navaratnam, J Jewula, et al. PAH in Some Brands of Tea and Coffee Polycyclic Aromatic Compounds. 2015;35(1):74–90.
https://doi 10.1080/10406638.2014.918554.
49.
Girelli AM, Sperati D, Tarola AM. Determination of polycyclic aromatic hydrocarbons in Italian milk by HPLC with fluorescence detection. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(4):703–710.
https://doi:10.1080/19440049.2....
50.
Iwegbue CM, Edeme JN, Tesi GO, et al. Polycyclic aromatic hydrocarbon concentrations in commercially available infant formulae in Nigeria: estimation of dietary intakes and risk assessment. Food Chem Toxicol. 2014;72:221–227.
https://doi:10.1016/j.fct.2014....
51.
Mielech A, Puścion-Jakubik A, Socha K. Assessment of the Risk of Contamination of Food for Infants and Toddlers. Nutrients. 2021;13(7):2358. Published 2021 Jul 9. doi:10.3390/nu13072358.
54.
Henkler F, Stolpmann K, Luch A. Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses. Exp Suppl. 2012;101:107–131.
https://doi.org/10.1007/978-3-....
55.
Fu PP, Xia Q, Sun X, et al. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2012;30(1):1–41.
https://doi.org/10.1080/105905....
56.
Sinaei M, Rahmanpour S. Evaluation of glutathione S-transferase activity as a biomarker of PAH pollution in mudskipper, Boleophthalmus dussumieri, Persian Gulf. Bull Environ Contam Toxicol. 2013;90(3): 369–374.
https://doi.org/10.1007/s00128....
57.
Pushparajah DS, Umachandran M, Plant KE, et al. Up-regulation of the glutathione S-transferase system in human liver by polycyclic aromatic hydrocarbons; comparison with rat liver and lung. Mutagenesis. 2008;23(4):299–308.
https://doi.org/10.1093/mutage....
58.
Kocbach Bolling A, Pagels J, Yttri KE, et al. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol. 2009;6:29. doi: 0.1186/1743-8977-6-29.
59.
Idowu O, Semple KT, Ramadass K, et al. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ Int. 2019;123:543–557. doi:10.1016/j.envint.2018.12.051.
60.
Gurbani D, Bharti SK, Kumar A, et al. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health. 2013;216(5):553–565.
https://doi.org/10.1016/j.ijhe....
61.
Zhang L, Jin Y, Huang M, et al. The role of human aldo-keto reductases in the metabolic activation and detoxication of polycyclic aromatic hydrocarbons: interconversion of PAH catechols and PAH o-quinones. Front Pharmacol. 2012;3:193. doi:10.3389/fphar.2012.00193.
62.
Mesquita SM, van Drooge B, Barata C, et al. Toxicity of atmospheric particle-bound PAHs: an environmental perspective. Environ Sci Pollut Res Int. 2014;21(20):11623–33. doi:10.1007/s11356-014-2628-y.
63.
McCarty KM, Santella RM, Steck SE, et al. PAH-DNA adducts, cigarette smoking, GST polymorphisms, and breast cancer risk. Environ Health Perspect. 2009;117(4):552–558. doi:10.1289/ehp.0800119.
64.
Kropachev K, Kolbanovskiy M, Liu Z, et al. Adenine-DNA adducts derived from the highly tumorigenic Dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not. Chem Res Toxicol. 2013;26(5):783–793. doi:10.1021/tx400080k.
65.
Zhou GD, Richardson M, Fazili IS, et al. Role of retinoic acid in the modulation of benzo(a)pyrene-DNA adducts in human hepatoma cells: implications for cancer prevention. Toxicol Appl Pharmacol. 2010;249(3):224–230. doi:10.1016/j.taap.2010.09.019.
66.
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2(1):a001008. doi:10.1101/cshperspect.a001008.
67.
Wester PW, Muller JJ, Slob W, et al. Carcinogenic activity of benzo[a]pyrene in a 2 year oral study in Wistar rats. Food Chem Toxicol. 2012;50(3–4):927–935.
https://doi.org/10.1016/j.fct.....
68.
Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt J Petrol. 2016;2(1):107–123.
https://doi.org/10.1016/j.ejpe....
69.
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92.
70.
Novosad J, Fiala Z, Borská L, et al. Immunosuppressive effect of polycyclic aromatic hydrocarbons by induction of apoptosis of pre-B lymphocytes of bone marrow. Acta Medica (Hradec Kralove). 2002;45(4): 123–128.
71.
Duca RC, Grova N, Ghosh M, et al. Exposure to Polycyclic Aromatic Hydrocarbons Leads to Non-monotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Sci Rep. 2018;8(1):10577. https:// doi:10.1038/s41598-018-28911-y.
72.
Gao J, Burchiel SW. Genotoxic mechanisms of PAH-induced immunotoxicity. In: Corsini E, van Loveren H, editor. Molecular immunotoxicology. Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 245–262.
https://doi.org/10.1002/978352....
73.
Zeng Z, Gao Y, Cui J, et al. Liquid-liquid extraction combined with online cleanup for the simultaneous determination of PAHs by GC-MS/MS and their hydroxylated metabolites by LC-MS/MS in human fingernails. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1188: 123057.
https://doi.org/10.1016/j.jchr....
74.
Rengarajan T, Rajendran P, Nandakumar N, et al. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed. 2015;5:182–189. doi.org/10.1016/S2221-1691(15)30003-4.
75.
Zhang Y, Dong S, Wang H, et al. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. Environ Pollut. 2016;213:809–824. doi:10.1016/j.envpol.2016.03.050.
76.
Blazkova B, Pastorkova A, Solansky I, et al. Effect of polycyclic aromatic hydrocarbons exposure on cognitive development in 5 years old children. Brain Sci. 2020;10(9):619. doi:10.3390/brainsci10090619.
77.
Schraplau A, Schewe B, Neuschäfer-Rube F, et al. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital. Toxicology. 2015;328:21–28.
https://doi:10.1016/j.tox.2014....