PL EN
RESEARCH PAPER
Polymorphisms in DNA repair genes – assessment of frequencies and effect on the level of DNA oxidative damage caused by lead
 
More details
Hide details
1
Pracownia Toksykologii Genetycznej, Instytut Medycyny Pracy i Zdrowia Środowiskowego. Dyrektor: dr n. med. P. Z. Brewczyński
 
2
Śląski Uniwersytet Medyczny w Katowicach, Wydział Lekarski w Katowicach, Katedra i Zakład Biologii Molekularnej i Genetyki. Kierownik Katedry: prof. dr hab. n. med. A. L. Sieroń
 
 
Corresponding author
Elżbieta Olewińska   

Pracownia Toksykologii Genetycznej Instytut Medycyny Pracy i Zdrowia Środowiskowego ul. Kościelna 13; 41-200 Sosnowiec tel. (32) 266 08 85; fax. (32) 266 11 24
 
 
Med Srod. 2014;17(4):29-37
 
KEYWORDS
ABSTRACT
Introduction:
The aim of this study was to evaluate the effect of polymorphisms in DNA repair genes: APE1, hOGG1, XRCC1, XPA on the level of oxidative damage to DNA as well as an assessment of the frequencies of genetic polymorphisms in the adult population of Caucasians from southern Poland.

Material and Methods:
We examined a group of 115 men occupationally exposed to lead and 58 men with no history of occupational exposure to lead. The concentrations of lead in blood, zinc protoporphyrin in blood and 8-hydroxy-2-deoxyguanosine in urine were measured. The identification of SNP polymorphisms in genes encoding enzymes involved in DNA repair (APEX1, hOGG1, XPA, XRCC1) was performed using real-time PCR with TaqMan probes. We analyzed polymorphisms: APEX1 (rs1130409, Asp148Glu), hOGG1 (rs1052133, Ser326Cys), XPA (rs1800975, -4A/G) and XRCC1 (rs25487, Gln399Arg).

Results:
The mean blood lead level in the exposed group was 33,48 μg/dl and was significantly higher compared to 5.35 μg/dl (p=0.000). in the control group. The frequencies of studied polymorphisms were comparable in both groups, with the exception of -4A/G (rs1800975) in the gene XPA (p<0.0001).

Conclusions:
Differences were observed between genotypes in -4A/G (rs1800975) polymorphism in relations to the level of lead in blood (p=0.006) and Ser326Cys (rs1052133) polymorphism in relations to 8-hydroxy-2- deoxyguanosine in urine (p=0.01).

 
REFERENCES (34)
1.
IARC: Inorganic and organic lead compounds. Lyon: IARC. IARC Monogr Eval Carcinog Risks Hum 2006; 87.
 
2.
Flora S.J.S., Mittal M., Mehta A.: Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 2008 Oct; 128: 501–523.
 
3.
Olewińska E.: Polimorfizmy w geanch naprawy DNA a uszkodzenia indukowane przez ołów – analiza piśmiennictwa. Med Śr – Environ Med 2014; 17: 69–74.
 
4.
Patrick L.: Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev J Clin Ther 2006 Mar; 11: 2–22.
 
5.
Valko M., Rhodes C.J., Moncol J. i wsp.: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006 Mar 10; 160: 1–40.
 
6.
Cooke M.S., Evans M.D., Dizdaroglu M. i wsp.: Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003 Jan 7; 17: 1195–1214.
 
7.
Wu L.L., Chiou C.C., Chang P.Y. i wsp.: Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta Int J Clin Chem 2004 Jan; 339: 1–9.
 
8.
Valavanidis A., Vlachogianni T., Fiotakis C.: 8-hydroxy-2” - deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2009 Apr; 27: 120–139.
 
9.
Vaglenov A., Carbonell E., Marcos R.: Biomonitoring of workers exposed to lead. Genotoxic effects, its modulation by polyvitamin treatment and evaluation of the induced radioresistance. Mutat Res 1998; 418: 79–92.
 
10.
Bilban M.: Influence of the work environment in a Pb-Zn mine on the incidence of cytogenetic damage in miners. Am J Ind Med 1998 Nov; 34: 455–463. Roszkowski K.: Mechanizmy naprawy oksydacyjnych uszkodzeń DNA. Współczesna Onkol 2002; 6: 360–365.
 
11.
De Vizcaya-Ruiz A., Barbier O., Ruiz-Ramos R. i wsp.: Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res 2009 Mar 31; 674: 85– 92.
 
12.
Twyman R.: Mutation or polymorphism? [Internet]Available from: http://genome.wellcome.ac.uk/d....
 
13.
Sripichai O., Fucharoen S.: Genetic polymorphisms and implications for human diseases. J Med Assoc Thail Chotmaihet Thangphaet 2007 Feb; 90: 394–398.
 
14.
Mateuca R.A., Roelants M., Iarmarcovai G. i wsp.: hOGG1326, XRCC1399 and XRCC3241 polymorphisms influence micronucleus frequencies in human lymphocytes in vivo. Mutagenesis 2008 Jan 1; 23: 35–41.
 
15.
Janssen K., Schlink K., Götte W. i wsp.: DNA repair activity of 8-oxoguanine DNA glycosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutat Res 2001 Aug 9; 486: 207–216.
 
16.
Mateuca R., Aka P.V., De Boeck M. i wsp.: Influence of hOGG1, XRCC1 and XRCC3 genotypes on biomarkers of genotoxicity in workers exposed to cobalt or hard metal dusts. Toxicol Lett 2005 Apr 10; 156: 277–288.
 
17.
Hadi M.Z., Coleman M.A., Fidelis K. i wsp.: Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res 2000 Oct 15; 28: 3871–3879.
 
18.
McNeill D.R., Wong H-K., Narayana A. i wsp.: Lead promotes abasic site accumulation and co-mutagenesis in mammalian cells by inhibiting the major abasic endonuclease Ape1. Mol Carcinog 2007 Feb; 46: 91–99.
 
19.
Butkiewicz D., Drosik A., Suwiński R. i wsp.: Influence of DNA repair gene polymorphisms on prognosis in inoperable.
 
20.
non-small cell lung cancer patients treated with radiotherapy and platinum-based chemotherapy. Int J Cancer J Int Cancer 2012 Oct 1; 131: E1100–1108.
 
21.
Wang F., He Y., Guo H. i wsp.: Genetic Variants of Nucleotide Excision Repair Genes Are Associated with DNA Damage in Coke Oven Workers. Cancer Epidemiol Biomarkers Prev 2010 Jan 1; 19: 211–218.
 
22.
Kalkulator statystyczny. [Internet]Available from: http://www.tufts.edu/~mcourt01...% 20-%20HW%20calculator.xls.
 
23.
Trzcinka-Ochocka M., Jakubowski M., Raźniewska G.: Ocena narażenia zawodowego na ołów w Polsce. Med Pr 2005; 56: 395–404.
 
24.
Trzcinka-Ochocka M., Jakubowski M., Raźniewska G.: [Asessment of occupational exposure to lead in Poland]. Med Pr 2005; 56: 395–404.
 
25.
Sakai T.: Biomarkers of lead exposure. Ind Health 2000 Apr; 38: 127–142.
 
26.
Chełchowska M., Jabłonka-Salach K., Ambroszkiewicz J.: Wpływ palenia tytoniu na poziom ołowiu we krwi kobiet ciężarnych. Med Wieku Rozwoj 2012; 3: 196–204.
 
27.
Zalewska M., Królik M., Milnerowicz H.: Wpływ pracy w hutnictwie i palenia papierosów na stężenie malonylodialdehydu i 8-hydroksydeoksyguanozyny we krwi. Przegląd Lek 2011; 68: 770–774.
 
28.
Ryk C., Kumar R., Thirumaran R.K. i wsp.: Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never- and ever-smokers. Lung Cancer Amst Neth 2006 Dec; 54: 285–292.
 
29.
Druga twarz tlenu – Księgarnia PWN [Internet]. ksiegarnia.pwn.pl [cited 2014 Mar 18];Available from: http://ksiegarnia.pwn.pl/produ.... html.
 
30.
Pilger A., Rüdiger H.W.: 8-Hydroxy-2”-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 2006 Oct; 80: 1–15.
 
31.
Jasim S.M.: Lead exposure effects on batteries manufacturing factory workers in Baghdad. Iraqi JMS 2012; 10: 321–327.
 
32.
Szymańska-Chabowska A., Beck A., Poręba R. i wsp.: Evaluation of DNA damage in people occupationally exposed to arsenic and some heavy metals. Pol J Env Stud 2009; 18: 1131–1139.
 
33.
García-Lestón J., Roma-Torres J., Vilares M. i wsp.: Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int 2012 Aug; 43: 29–36.
 
34.
NCBI. SNP database [Internet] [cited 2014 Mar 18]; Available from: http://www.ncbi.nlm.nih.gov/sn....
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top