PL EN
PRACA POGLĄDOWA
Praca wzrokowa z bliska oraz niska aktywność ruchowa jako główne czynniki ryzyka krótkowzroczności
 
Więcej
Ukryj
1
Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej, Polska
 
2
Szkoła Doktorska Śląski Uniwersytet Medyczny, Polska
 
 
Autor do korespondencji
Marek Wojczyk   

Szkoła Doktorska Śląski Uniwersytet Medyczny, Poniatowskiego 15, 40-055, Katowice, Polska
 
 
Med Srod. 2022;25(3-4):77-81
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
Krótkowzroczność jest jedną z najczęściej występujących wad refrakcji układu optycznego oka. Najintensywniejszy rozwój krótkowzroczności występuje u dzieci, a zależny jest od czynników genetycznych i środowiskowych. Postęp technologiczny i zmiana stylu życia na mniej aktywny ruchowo w ostatnich latach sprawiają, iż ciągle wzrasta liczba osób, u których wykrywa się krótkowzroczność. Do pogłębiania się krótkowzroczności przyczyniają się w dużym stopniu czynniki środowiskowe, takie jak: zbyt intensywna praca z bliska, zbyt mała aktywność ruchowa, nieodpowiednia dieta, styl życia oraz nieodpowiednia korekcja wady wzroku. Celem pracy jest przedstawienie i omówienie głównych czynników środowiskowych, które mają wpływ na rozwój oraz progresję krótkowzroczności.

Opis stanu wiedzy:
Wysiłek wzrokowy z bliskiej odległości stanowi najważniejszy modyfikowalny czynnik ryzyka rozwoju krótkowzroczności. Szczególne znaczenie ma intensywność i charakter pracy z bliska. Zwiększenie częstości używania urządzeń mobilnych w ostatnich latach ma duży wpływ na pojawienie się krótkowzroczności u dzieci. Innym czynnikiem ryzyka jest mała aktywność ruchowa na zewnątrz. Dostateczne oświetlenie oraz ograniczenie pracy akomdacyjnej oka w czasie aktywności ruchowej na wolnym powietrzu działa profilaktycznie w kontekście rozwoju krótkowzroczności.

Podsumowanie:
Częsta konieczność pracy z bliska powinna być połączona z higieną pracy wzrokowej, tak by zminimalizować ryzyko powstania lub progresji krótkowzroczności.


Introduction and objective:
Myopia is one of the most common refractive errors of the optical system of the eye. The most intensive development of myopia occurs in children, which depends on genetic and environmental factors. Due to technological progress and a change in lifestyle to one which is less active, as has been observed in recent years, an everincreasing number of people are diagnosed with myopia. The deepening of myopia is largely due to environmental factors, such as: too intense near work, insufficient physical activity, inadequate diet, lifestyle and inadequate correction of vision defects. The aim of the study is to present and discuss the main environmental factors impacting on the development and progression of myopia.

Abbreviated description of the state of knowledge:
Visual effort at close range is the most important modifiable risk factor for developing myopia. The intensity and nature of near work is of particular importance. An increase in the frequency of using mobile devices in recent years is especially important for the emergence of myopia in children. Another risk factor is low outdoor physical activity. Sufficient lighting and limiting the accommodative work of the eye during physical activity in the open air exerts a prophylactic effect in the context of the development of myopia.

Summary:
Frequent necessity for near work should be combined with the hygiene of visual work in order to minimize the risk of development or progression of myopia.

 
REFERENCJE (31)
1.
Williams KM, Bertelsen G, Cumberland P, Wolfram C, Verhoeven VJ, Anastasopoulos E, et al. Increasing Prevalence of Myopia in Europe and the Impact of Education. European Eye Epidemiology. Consortium Ophthalmol. 2015;122(7):1489–1497.
 
2.
Williams KM, Verhoeven VJ, Cumberland P, Bertelsen G, Wolfram C, Buitendijk GH, et al. Prevalence of refractive error in Europe. European Eye Epidemiology. Consortium. Eur J Epidemiol. 2015;30(4):305–315.
 
3.
Ambroziak AM. Krótkowzroczność i co dalej? Pt 1. Optyka. 2019;4(59):40–41.
 
4.
Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmol. 2016;123(5):1036–1042.
 
5.
Gajjar S, Ostrin LA. A systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries. Acta Ophthalmol. 2022;100(4):376–387.
 
6.
Czepita D. Myopia – incidence, pathogenesis, management and new possibilities of treatment. Russ Ophthalmol J. 2014;7(1):96–101.
 
7.
Oleszczyńska-Prost E. Krótkowzroczność. Pt 1. Patogeneza w świetle aktualnego stanu wiedzy. Klinika Oczna. 2018;(3):168–172.
 
8.
Ambroziak AM. Krótkowzroczność – Podstawy epidemiologii i pato-genezy, zasady postępowania i leczenia, pułapki codziennej praktyki. Okulistyka. 2011;(4):16.
 
9.
Ghorbani Mojarrad N, Plotnikov D, Williams C, Guggenheim JA. UK Biobank Eye and Vision Consortium. Association Between Polygenic Risk Score and Risk of Myopia. JAMA Ophthalmol. 2020;138(1):7–13.
 
10.
Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res. 2019;188:107778.
 
11.
Huang HM, Chang DS, Wu PC. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis. PLoS One. 2015;10(10):e0140419.
 
12.
Czepita M, Czepita D, Lubiński W. The Influence of Environmental Factors on the Prevalence of Myopia in Poland. J Ophthalmol. 2017;2017:5983406.
 
13.
Williams R, Bakshi S, Ostrin EJ, Ostrin LA. Continuous Objective Assessment of Near Work. Sci Rep. 2019;9(1):6901.
 
14.
Czepita M, Safranow K, Czepita D. The influence of reading and writing on the prevalence of myopia. Ann Acad Med Stetin. 2014;60(2):34–6.
 
15.
Garner LF, Kinnear RF, Klinger JD, McKellar MJ. Prevalence of myopia in school children in Vanuatu. Acta Ophthalmol (Copenh). 1985;63(3):323–6.
 
16.
Yao L, Qi LS, Wang XF, Tian Q, Yang QH, Wu TY, et al. Refractive Change and Incidence of Myopia Among A Group of Highly Selected Senior High School Students in China: A Prospective Study in An Aviation Cadet Prerecruitment Class. Invest Ophthalmol Vis Sci. 2019;60(5):1344–1352.
 
17.
Bocheńska A, Orkisz M. Wpływ urządzeń mobilnych na narząd wzroku. Optyka. 2019;4:48–50.
 
18.
Foreman J, Salim AT, Praveen A, Fonseka D, Ting DSW, Guang He M, Bourne RRA, Crowston J, Wong TY, Dirani M. Association between digital smart device use and myopia: a systematic review and meta-analysis. Lancet Digit Health. 2021;3(12):e806–e818.
 
19.
Lin Z, Vasudevan B, Jhanji V, Mao GY, Gao TY, Wang FH, et al. Near work, outdoor activity, and their association with refractive error. Optom Vis Sci. 2014;91(4):376–82.
 
20.
Yam JC, Tang SM, Kam KW, Chen LJ, Yu M, Law AK, et al. High prevalence of myopia in children and their parents in Hong Kong Chinese Population: the Hong Kong Children Eye Study. Acta ophthalmologica. 2020;98(5):e639–48.
 
21.
Huang L, Kawasaki H, Liu Y, Wang Z. The prevalence of myopia and the factors associated with it among university students in Nanjing: A cross-sectional study. Medicine (Baltimore). 2019;98(10):e14777.
 
22.
Huang PC, Hsiao YC, Tsai CY, Tsai DC, Chen CW, Hsu CC, et al. Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study. Br J Ophthalmol. 2020;104(7):956–961.
 
23.
Read SA, Collins MJ, Vincent SJ. Light exposure and physical activity in myopic and emmetropic children. Optom Vis Sci. 2014;91(3):330–41.
 
24.
Karouta C, Ashby RS. Correlation between light levels and the development of deprivation myopia. Invest Ophthalmol Vis Sci. 2014;56(1):299–309.
 
25.
Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN, Huang HM, et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmol. 2018;125(8):1239–1250.
 
26.
Młyniuk P. Metody spowolnienia progresji krótkowzroczności – przegląd literatury. Optyka. 2019;4(59):44–47.
 
27.
Zhu Z, Chen Y, Tan Z, Xiong R, McGuinness MB, Müller A. Interventions recommended for myopia prevention and control among children and adolescents in China: a systematic review. Br J Ophthalmol. 2023 Feb;107(2):160–166.
 
28.
Schmid K. Impact of Nutritional Components: Myopia Manual An impartial documentation of all the reasons, therapies and recommendations 2023. Online http://www.myopia-manual.de/pr... (access: 2023.01.26).
 
29.
Pan M, Zhao F, Xie B, Wu H, Zhang S, Ye C, Guan Z, Kang L, Zhang Y, Zhou X, Lei Y, Wang Q, Wang L, Yang F, Zhao C, Qu J, Zhou X. Dietary ?-3 polyunsaturated fatty acids are protective for myopia. Proc Natl Acad Sci U S A. 2021 Oct 26;118(43):e2104689118. doi: 10.1073/pnas.2104689118.
 
30.
Mori K, Torii H, Fujimoto S, et al. The effect of dietary supplementation of crocetin for myopia control in children: a randomized clinical trial. J Clin Med. 2019;8.
 
31.
Seo-Wei L, Terri L Y. Oparte na dowodach naukowych aktualne poglądy na krótkowzroczność i postępowanie spowalniające jego progresję. Okulistyka po dyplomie. 2013; 3(3): 6–19.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top