PL EN
PRACA POGLĄDOWA
Problematyka lotnych związków organicznych w farmacji
 
Więcej
Ukryj
1
Katedra i Zakład Chemii Fizycznej Gdański Uniwersytet Medyczny, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Kierownik Katedry: prof. dr hab. W. Sawicki Dziekan Wydziału Farmaceutycznego z OML GUMed: prof. dr hab. W. Sawicki
 
 
Autor do korespondencji
Marzena Jamrógiewicz   

Katedra i Zakład Chemii Fizycznej Gdański Uniwersytet Medyczny, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Kierownik Katedry: prof. dr hab. W. Sawicki Dziekan Wydziału Farmaceutycznego z OML GUMed: prof. dr hab. W. Sawicki
 
 
Med Srod. 2013;16(3):59-68
 
SŁOWA KLUCZOWE
STRESZCZENIE
Brak stabilności chemicznej substancji leczniczych może skutkować powstawaniem i emisją substancji o charakterze lotnym oraz wpływać nie tylko na stabilność produktu leczniczego, lecz również prowadzić do zmian jego właściwości fizykochemicznych, wywoływać negatywne efekty farmakologiczne, a czasami również toksyczne. Z tego względu istotne jest rutynowe prowadzenie testów stabilności, jak również oznaczanie gazowych produktów degradacji nowoczesnymi metodami, często niekonwencjonalnymi. Wiedza z zakresu chemii medycznej, chemii fizycznej, technologii postaci leku i toksykologii jest potrzebna, by zapewnić stabilną postać leku i optymalny efekt terapeutyczny. Scharakteryzowano wytyczne dotyczące oznaczanych lotnych związków organicznych (LZO) obecnych w próbkach substancji leczniczych, wyszczególniono rodzaje LZO i ich klasyfikację. Dokonano przeglądu bieżącej literatury opisującej wyniki oznaczeń LZO w substancjach i produktach leczniczych oraz omówiono różne możliwości ich detekcji i identyfikacji. Obecnie najczęściej wykorzystuje się metody oparte o chromatografię gazową, GC oraz spektroskopię mobilności jonowej, IMS.

The sensitivity and chemical instability of the active pharmaceutical ingredients (API) may result in the formation and emission of volatile substances which affect not only the stability of the medicinal product, but also leads to changes of physicochemical properties, causing negative pharmacologic effects sometimes toxic. For this reason, it is important to conduct routine stability tests, as well as, to determine gaseous degradation products using modern analytical methods, often unconventional. Knowledge of medicinal chemistry, physical chemistry, technology and toxicology is needed to provide a stable form of the drug and its utmost therapeutic effect. Available guidelines on determined volatile organic compounds (VOCs) present in samples of drug substances have been verified , types of VOCs have been specified and classified. Current literature reviewed shows the results of determination of VOCs in active drug compounds and medicinal products, including discussion on various possibilities of their detection and identification. Currently used methods are based on gas chromatography and ion mobility spectrometry IMS.
REFERENCJE (28)
1.
International Conference on Harmonisation. Guidance on Impurities. Residual Solvents; Federal Register 62, 1997: 67377-67388.
 
2.
Dyrektywa 2004/42/WE Parlamentu Europejskiego i Rady z dnia 21 kwietnia 2004 r., Dz.U. Unii Eur. L 143/87.
 
3.
Wegman L.N.: Definition of Regulated Air Pollutant for Purposes of Title V – memorandum. Environmental Protection Agency, 1993.
 
4.
Konwencja w sprawie transgranicznego zanieczyszczenia powietrza na dalekie odległości, sporządzona w Genewie dnia 13 listopada 1979 r. (Dz.U. z 1985 r. Nr 60, poz. 311).
 
5.
Hymer C.B.: Residual sol vent testing: a review of gas-chromatographic and alternative techniques. Pharm Res 2003; 20: 337-344.
 
6.
Chilmonczyk Z., Ulman M.: Volatile organic compoundscomponents, sources, determination. Anal Chem 2007; 52: 173-179.
 
7.
Guidebook (2006). EMEP/CORINAIR Emission Inventory Guidebook, version 4 (2006 edition), European Environmental Agency. Technical report No 11/2006 http://reports.eea. europa.eu/EMEPCORINAIR4/en/page002.html. Generally chapter B216.
 
8.
Ochrona Środowiska 2007, GUS, Warszawa 2007: 215-230.
 
9.
Grodowska K., Parczewski A.: Organic solvents in the pharmaceutica industry. Acta Pol Pharm-Drug Res 2010; 67: 3-12.
 
10.
Environment 2010:Our future, our choice, The Six1“ EU Environmet Action Progamme 2001-10, Commission communication – full text, Office of Official Publications of the European Communities, Luxemburg 2001.
 
11.
Krstulovic A.M., Lee C.R.: Defining drug purity through chromatographic and related methods: current status and perspectives. J Chromatogr B 1997; 689: 137-153.
 
12.
Ahuja S.: Assuring quality of drugs by monitoring impurities. Adv Drug Del Rev 2007; 59: 3-11.
 
13.
Brancaleoni E., Ciccioli P., Frattoni M., i wsp.: Novel family of multi-layer cartridges filled with a new carbon adsorbent for the quantitative determination of volatile organic compounds in the atmosphere. J Chromatogr A 1999; 845: 317-328.
 
14.
Barbarin N., Crucq A.S., Tilquin B.: Study of volatile compounds from the radiosterilization of solid cephalosporins. Radiat Phys Chem 1996; 48: 787-794.
 
15.
Beart B., Vansteelandt S., Spiegeleer B.D.: Ion mobility spectrometry as a high-throughput technique for in vitro transdermal Franz diffusion cell experiments of ibuprofen. J Pharm Biomed Anal 2011; 55: 472-478.
 
16.
Hofmann T., Schieberle P.: Evaluation of the key odorants in a thermally treated solution of ribose and cysteine by aroma extract dilution techniques. J Agric Food Chem 1995; 43: 2187-2194.
 
17.
Lorenzo N., Wan T., Harper R., i wsp.: Laboratory and field experiments used to identify Canis lupus var. familiaris active odor signature chemicals from drugs, explosives and humans. Anal Bioanal Chem 2003; 376: 1212-1224.
 
18.
Jamrógiewicz M., Wielgomas B.: Detection of some volatile degradation products released during photoexposition of ranitidine in a solid state. J Pharm Biomed Anal 2012; 76: 177–182.
 
19.
Lindinger W., Hansel A., Jordan A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton- transfer-reaction mass spectrometry (PTR-MS) medicapplications, food control and environmental research. Int J Mass Spectrom Ion Process 1998; 173: 191-241.
 
20.
Hansel, A., Jordan, A., Holzinger, R. i wsp.: Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level. Int J Mass Spectrom Ion Process 1995; 149: 609- 619.
 
21.
Boca M.B., Pretorius E., Kgaje C. i wsp.: Assessment of MECK suitability for residua drug monitoring on pharmaceutical manufacturing equipment. J Pharm Biomed Anal 2008; 46: 631-638.
 
22.
Qin C., Granger A., Papov V. i wsp.: Quantitative determination of residual active pharmaceutical ingredients and intermediates on equipment surfaces by ion mobility spectrometry. J Pharm Biomed Anal 2010; 51: 107-113.
 
23.
Shifflet M.J., Shapiro M.: Development of analytical methods to accurately and precisely determine residual active pharmaceutical ingredients and cleaning agents on pharmaceutical surfaces. Am Pharm Rev 2002; 5: 35-40.
 
24.
Westmorland D.G., Rhodes G.R.: Analytical techniques for trace organic compounds II: Detectors for gas chromatography. Pure Appl Chem 1989; 61: 1148-1160.
 
25.
Doelker E., Witschi C.: Residual solvents in pharmaceutical products: acceptable limits, influences on physicochemical properties, analytical methods and documented values. Eur J Pharm Biopharm 1997; 43: 215-242.
 
26.
Baert B., Boonen J., Thierens C. i wsp.: Ion mobility spectrometry of talarozole, a new azole drug, in cleaning quality control. Int J Ion Mobil Spec 2011; 14:109–116.
 
27.
Zamora D., Alcala M., Blanco M.: Determination of trace impurities in cosmetics intermediates by ion mobility spectrometry. Anal Chim Acta 2011; 70: 69-74.
 
28.
Lapthorn C., Pullen F., Chowdhry B.Z.: Ion mobility spectrometry- mass spectrometry (IMS-MS) of small molecules: separating and assigning structures to ions. Mass Spectr Rev 2012; 1-29.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top