Cancer is a major public health concern in many parts of the world. The genesis of cancer is multi-causal with ome well known causal factors for some sites of cancer. However, some cancer causes are not clear up to nowadays. There are substantial geographic variations in mortality of some sites of cancer in different regions of the world that could be in relation with some environmental factors and trace elements such as arsenic, chromium and cadmium. The review summarizes the recent studies on that matter.
REFERENCES(64)
1.
Parkin D.M., Bray F., Ferlay J., et al.: Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for arsenic. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, GA, 2003: Report No.: 7440-38-2.
Rasmussen L., Andersen K.J.: Arsenic in drinking water (in:) World Health Organization, UNICEF (ed.): Environmental health and human exposure assessment. IWA, London, 2003:67–168.
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for cadmium. United States Department of Health and Human Services Agency for Toxic Substancesand Disease Registry, Atlanta, GA, 1999: Report No.: 7440–43-9.
Lamm S.H., Engel A., Kruse M.B., et al: Arsenic in drinking water and bladder cancer mortality in the United States: an analysis based on 133 U.S. counties and 30 years of observation. J Occup Environ Med 2004; 46:.298–306.
Polizzotto M.L., Kocar B.D., Benner S.G., et al.: Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008; 454: 505–508.
Winkel L., Berg M., Amini M., et al.: Predicting groundwater arsenic contamination in Southeast Asia from surface parameters, Nat Geosci 2008; 1: 536–542.
Brima E.I., Haris P.I., Jenkins R.O., et al.: Understanding arsenic metabolism through a comparative study of arsenic level in the urine, hair and fingernails of healthy volunteer from three unexposed ethnic group in the United Kingdom. Toxicol Appl Pharmacol 2006; 216 : 112–130.
Hata A., Endo Y., Nakajima Y., et al.: HPLCICP-MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure. J Occup Health 2007; 49: 217–223.
El-Masri H.A., Kenyon E.M.: Development of a human physiologically based pharmacokinetic (PBPK) model for inorganic arsenic and its mono- and dimethylated metabolites. J Pharmacokinet Pharmacodyn 2008; 35: 31–68.
Hsueh Y.M., Hsu M.K, Chiou H.Y., et al.: Urinary arsenic speciation in subjects with or without restriction from seafood dietary intake. Toxicol Lett 2002; 133: 83–91.
Clewell H.J., Thomas R.S., Gentry P.R., et al.: Research toward the development of a biologically based dose response assessment for inorganic arsenic carcinogenicity: a progress report. Toxicol Appl Pharmacol 2007; 222: 288–398.
Chen Ch.L., YiChiou H., IHsu L., et al.: Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res 2010; 110: 455–462.
Heck J.E., Andrew A.S., Onega T., et al.: Lung Cancer in a U.S. Population with Low to Moderate Arsenic Exposure. Environ Health Perspect 2009; 117(11): 1718-1723.
Cantor K.P., Lubin J.H.: Arsenic, internal cancers, and issues in inference from studies of low-level exposures in human populations. Toxicol Appl Pharmacol 2007; .22: 252–257.
Krebs R.E.: The history and use of our Earth’s chemical elements: A Reference Guide. Second Ed. Greenwood Publishing Group, Santa Barbara, CA 2006: 96.
Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for chromium. Public health service, U.S. department of health and human services, Atlanta, GA 2000.
International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 49: Chromium, Nickel and Welding. IARC Press: Lyon, France 1990.
Wesseling C., Pukkala E., Neuvonen K., et al.: Cancer of the brain and nervous system and occupational exposures in Finnish women. J Occup Environ Med 2002; 44(7): 663–668.
Cole P., Rodu B. Epidemiologic studies of chrome and cancer mortality: A series of meta-analyses. Regulatory Toxicology and Pharmacology 2005; 43: 225–231.
Crump C., Crump K., Hack E., et al.: Dose–response and risk assessment of airborne hexavalent chromium and lung cancer mortality. Risk Analysis 2003; 23: 1147–1163.
Beveridge R., Pintos J., Parent M.E., et al.: Lung Cancer Risk Associated With Occupational Exposure to Nickel, Chromium VI, and Cadmium in Two Population-Based Case–Control Studies in Montreal. Am J Indust Med 2010; 53: 476–485.
Davidson T.L., Kluz T., Burns, F.J., et al.: Exposure to chromium (VI) in the drinking water increases susceptibility to UV-induced skin tumors in hairless mice. Toxicol Appl Pharmacol 2004; 196(3): 431–437.
EEC-European Council Regulation. Commission Regulation (EC) No 66/2001 of 8 March 2001 setting maximum levels for certain contaminants in food stuffs. Off J Eur Commun L 077:0001–0013. 2001.
The Centers for Disease Control and Prevention (CDC). Third national report on human exposure to environmental chemicals. Centers for Disease Control and Prevention, Atlanta 2005.
International Agency for Research on Cancer (IARC). IARC Monographs on Monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, 1993: 119–237.
Vinceti M., Venturelli M., Sighinolfi C., et al.: Case-control study of toenail cadmium and prostate cancer risk in Italy. Sci Total Environ 2007; 373: 77–81.
Pesch B., Haerting J., Ranft U., et al.: Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany. Int J Epidemiol 2000; 29: 1014–1024.
Garcia-Morales P., Saceda M., Kenney N., et al.: Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J BiolChem 1994; 269: 16896–16901.
Ionescu J.G,. Novotny J., Stejskal V., et al.: Increased levels of transition metals in breast cancer tissue. Neuroendocrinol Lett 2006; 27(Suppl. 1): 36–39.
Strumylaite L., Bogusevicius A., Abdrachmanovas O., et al.: Cadmium concentration in biological media of breast cancer patients Breast Cancer Res Treat DOI 10.1007/s10549-010- 1007-8.
Pesch B., Haerting J., Ranft U., et al.: Occupational risk factors for renal cell carcinoma:agent specific results from a case-control study in Germany. Int J Epidemiol, 2000; 29: 1014–1024.
Kriegel A.M., Soliman A.S., Zhang Q., et al.: Serum cadmium levels in pancreatic cancer patients from the East Nile Delta region of Egypt. Environ Health Perspect 2006; 114 (1): 113-119.
Sahmoun A.E., Case L.D., Jackson S.A., Schwartz G.G. Cadmium and prostate cancer: A critical epidemiologic analysis cancer investigation 2005; 23:256–263.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.