PRACA POGLĄDOWA
Środowiskowe narażenie na metylortęć – jako czynnik ryzyka zaburzeń neurorozwojowych
Więcej
Ukryj
1
Instytut Medycyny Pracy i Zdrowia Środowiskowego Dyrektor: dr hab. n. med. R. Złotkowska
2
Katedra i Zakład Higieny Uniwersytetu Medycznego we Wrocławiu Kierownik: prof. dr hab. n. med. K. Pawlas
Autor do korespondencji
Henryka Langauer-Lewowicka
Instytut Medycyny Pracy i Zdrowia Środowiskowego
41-200 Sosnowiec ul. Kościelna 13,
tel. 32 266 08 85–89 w. 200
Med Srod. 2017;20(4):45-60
SŁOWA KLUCZOWE
STRESZCZENIE
Powszechnie wiadomo iż narażenie na metylortęć (MeHg) wywołuje uszkodzenie wielu narządów. Prezentowany artykuł poglądowy przedstawia aktualne informacje, dotyczące ryzyka wystąpienia zaburzeń neurorozwojowych, wywołanych pre- i postnatalnym kontaktem z MeHg poprzez spożywanie ryb i ssaków morskich. Szczególną uwagę poświęcono dzieciom z rejonów, w których owoce morza stanowią podstawę diety. U osób których dieta zawiera takie produkty, dochodzi do zaburzeń funkcji ruchowych, deficytów uwagi, upośledzenia rozwoju umysłowego. Mimo szeroko prowadzonych badań, nie ustalono dotąd progowej dawki neurotoksycznej dla MeHg. Redukcja zagrożenia może przynieść znaczne korzyści Europie, zwłaszcza jej południowym krajom, gdzie w codziennym jadłospisie ryby stanowią znaczącą pozycję.
Human exposure to methylmercury (MeHg) has long been known to produce disorders in various organ systems. The aim of this paper is to present current information about the risk of neurodevelopmental disorders due to pre- and post-natal exposure to MeHg via consumption of fish or marine mammals. Special attention is paid to long-term consequences of prenatal exposure on child development in communities with chronic highlevel dietary exposure to MeHg. This exposure is significantly associated with motor disorders, attention deficit, and mental retardation. Despite extensive research, the threshold dose for MeHg neurotoxic effect is still unclear, particularly when it comes to subtle effects on neurodevelopmental disorders. There are some economic consequences of prenatal MeHg exposure. A reduction of this exposure will bring large-scale social benefits to Europe, mainly to southern countries.
REFERENCJE (49)
1.
Kłys M.: Z rtęcią (i…) przez stulecia. Arch Med. Sąd Kryminol 2010; LX: 298-307.
2.
Masur C.: A Review of the Use of Mercury in Historic and Current Ritualistic and Spiritual Practices. Environ Medicine 2011; 16, 4: 314-320.
3.
Sun L., Yin X., Liu X. et al.: A 2000-year record of mercury and ancient civilization in seal hairs from King George Island, West Antarctica. Sci Total Environment 2006; 368: 236-247.
4.
Langauer-Lewowicka H., Pawlas K.: Niektóre aspekty środowiskowego narażenia na rtęć. Med. Srodowiskowa 2009; 12(1): 109-114.
5.
Hunter D., Rassell DS.: Focal cerebellar and cerebellar atrophy in a human subject due to organic mercury com- pounds. J Neurol Neurosurg Psychiatry 1954; 17(4): 235- 241.
6.
Grandjean Ph., Satoh H., Murata K., Eto K.: Adverse Effects of Methylmercury: Environmental Health Research Implications. Environ Health Perspect 2010; 118: 8, 1137-1145.
7.
Jensen S., Jernelöv A.: Biosynthesis of methylmercury in Swedish Nordforsk Biocidinformation 1967; 10: 4-5.
8.
Jensen S., Jernelöv A.: Biological metylation of mercury in aquatic organisms. Nature 1969; 223(5207): 753-754.
9.
Engleson G., Herner T.: Alkyl mercury poisoning. Acta Paediatr 1952; 41(3): 289-294.
10.
Galster W.A.: Mercury in Alaskan Eskimo Mothers and Infants. Environ Health Perspect 1976; 17: 135-140.
11.
Hylander L.D., Meili M.: 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environment 2013; 304: 13-27.
12.
NRC (National Research Council) Toxicological Effects of Methylmercury. Washington, D.C. National Academy Press 2000.
13.
Edwards GN.: Two cases of poisoning by mercuric methide: Saint Bartholomew’s Hosp Rep 1865, 1; 141-150.
14.
Bakir F., Damluji S.F., Amin-Zaki L. et al.: Methylmercury Poisoning in Iraq. Science 1973; 18: (96), 230-241.
15.
Pichery C., Bellanger M., Zmirou-Navier D. et al.: Economic evaluation of health consequences of prenatal methylmercury exposure in France. Environ Health 2012; 11: 53.
16.
Suzuki K., Nakai K., Sugawara T. et al.: Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: Neonatal behavioral assessment scale results of Tohoku study of child development. Environ Research 2010; 110: 699-704.
17.
Hachiya N.: The History and the Present of Minamata Disease – Entering the second half a century. JMAJ 2006; 49(3): 112-118.
18.
Kinjo Y., Akiba S., Yamaguchi N. et al.: Cancer Mortality in Minamata Disease Patients Exposed to Methylmercury Through Fish Diet. J Epidemiol. 1996; 6: 3, 134-138.
19.
Ninomiya T., Ohmori H., Hashimoto K. et al.: Expansion of Methylmercury Poisoning outside of Minamata: An Epidemiological Study on Chronic Methylmercury Poisoning outside of Minamata. Environ Research 1995; 70: 47-50.
20.
Yorifuji T., Tsuda T., Kashima S., et al.: Long-term exposure to methylmercury and its effects on hypertension in Minamata. Environ Research 2010; 110: 40-46.
21.
Yorifuji T., Tsuda T., Inoue S., et al.: Long-term exposure to methylmercury and psychiatric symptoms on residents of Minamata, Japan. Environ International 2011; 37: 907-913.
22.
Dietz R., Outridge PM., Hobson KA.: Anthropogenic contributions to mercury levels in present-day Arctic animals – a Review. Sci Total Environment 2009; 407(24): 6120-6131.
23.
Antunes dos Santos A., Appel Hort M., Culbreth M., et al.: Methylmercury and brain development: A review of recent literature. J. Trace Elements in Medicine and Biology 2016.
24.
Kjellström T., Kennedy P., Wallis S., Manteli C.: Physical and Mental Development of Children with prenatal exposure to Mercury from Fish. Stage 1: Preliminary Tests at Age 4. Report 3080 1986 Solna. National Swedish Environmental Protection Board.
25.
Mania M., Wojciechowska-Mazurek M., Starska K. et al.: Ryby i owoce morza jako źródło narażenia człowieka na metylortęć. Rocz Panstw Zakł Hig 2012; 63: 3, 157-164.
26.
Swedish Expert Group. Methylmercury in fish. A toxicological epidemiological evaluation of risk. Nord Hyg Tidskr 1971 (4 Suppl), 19-364.
27.
Björnberg K.A., Vahter M., Grave K.P., et al.: Methylmercury exposure in Swedish women with high fish consumption. Sci Total Environment 2005; 341: 45-52.
28.
Jędrychowski W., Jankowski J., Flak E. et al.: Effects of Prenatal Exposure to Mercury on Cognitive and Psychomotor Fuction in One-Year-Old Infants: Epidemiologic Cohort Study in Poland. Ann Epidemiol 2006, 16: 439-447.
29.
Jędrychowski W., Petera F., Jankowski J. et al.: Fish consumption in pregnancy, cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of live: Krakow epidemiologic study. Environ International 2007; 33(8): 1057-1062.
30.
Prokopowicz A., Szuła M., Pawlas K. et al.: Środowiskowe narażenie na rtęć w wybranych rejonach Polski; wyniki oznaczania rtęci we krwi i moczu dzieci i dorosłych w: Rtęć w środowisku – Identyfikacja zagrożeń dla zdrowia człowieka. Fundacja Rozwoju Uniwersytetu Gdańskiego; 2010 ISBN 978-83-7531-004-7.
31.
Bellanger M., Pichery C., Aerts D. et al.: Economic benefits of methylmercury exposure control in Europe: Monetary value.
32.
Karagas M.R., Choi A.L., Oken E. et al.: Evidence on the Human Health Effects of Low-Level Methylmercury Exposure. Environ Health Perspect 2012; 120: 799-806.
33.
Davidson P.W., Strain J.J., Gary Myers G.J. et al.: Neurodevelopmental effects of maternal nutritional status and exposure to methylmercury from eating fish during pregnancy. Neurotoxicology 2008; 29: 767-775.
34.
Hibbeln J.R., Steer C. et al.: Maternal seafood consuption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet. 2007; 269: 578-585.
35.
Grandjean P., White R.F., Nielsen A. et al.: Methylmercury Neurotoxicity in Amazonian Children Downstream from Gold Mining. Environ Health Perspect 1999; 107: 7, 587- 589.
36.
Castoldi A.F., Onishchenko N., Johansson C. et al.: Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regulatory Toxicology and Pharmacology 2008; 51: 215-229.
37.
Castoldi A.F., Coccini T., Cecatelli S., Manzo L.: Neurotoxicity and molecular effects of methylmercury. Brain Research Bulletin 2001; 55: 2, 197-203.
38.
Sikorski R., Paszkowski T., Szprengier-Juszkiewicz T.: Mercury in neonatal scalp hair. Sci Total Environ 1986; 10(4): 370- 375.
39.
Bellinger D.C., O’Leary K., Rainis H., Gibb H.J.: Country – specific estimates of the incidence of intellectual desability associated with prenatal exposure to methylmercury. Environ Research 2016; 147: 159-163.
40.
Castoldi A.F., Johansson C., Onischenko N. et al.: Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology and Pharmacology 2008; 51: 201-214.
41.
Mosley St.: Environmental history of air pollution and protection. World Environmental History Encyclopedia of Life Support Systems (EOLSS).
42.
Debes F., Budtz-Jorgensen E., Weihe P. et al.: Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 2006; 28(3): 363-375.
43.
Małuszyńska I., Popenda A., Małuszyński M.J.: Interactions of mercury in the environment. Ann Warsaw Univ of Life Sci S66W, Land Reclam 2013; 45(2): 255-260.
44.
Rice D.C.: Overview of modifiers of methylmercury neurotoxicity: chemicals, nutrients, and the social environment. Neurotoxicology 2008; 29: 761-766.
45.
Ström S., Helmfrid I., Glynn A. et al.: Nutritional and toxicological aspects of seafood consumption-an integrated exposure and risk assessment of methylmercury and polyunsaturated fatty acids. Environ Research 2011; 111: 274-280.
46.
Grotto D., de Castro M.M., Barcelos G.R. et al.: Low level and sub-chronic exposure to methylmercury induces hypertention in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Toxicol 2009; 83(7): 653-662.
47.
Newland C.M., Paletz E.M., Reed M.N.: Methylmercury and nutrition: Adult effects of fetal exposure in experimental models. Neurotoxicology 2008; 29: 783-801.
48.
Clarkson T..: The Three Modern Faces of Mercury. EnvironHealth Perspect 2002; 110: 51, 11-23.
49.
Roman H.A., Walsh T.L., Coull B.A. et al.: Evaluation of the cardiovascular effects of methylmercury exposures: current evidence supports development of a dose-response function for regulatory benefits analysis. Environ Health Perspect 2011; 119: 607-614.