PRACA POGLĄDOWA
Tlenek węgla – trucizna czy potencjalny terapeutyk?
Więcej
Ukryj
1
Katedra Biologii Medycznej i Badań Translacyjnych, Wydział Medyczny, Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie
2
Zakład Biologii Molekularnej i Badań Translacyjnych, Instytut Medycyny Wsi im. Witolda Chodźki w Lublinie
3
Centrum Radiobiologii i Dozymetrii Biologicznej, Instytut Chemii i Techniki Jądrowej w Warszawie
Autor do korespondencji
Lucyna Kapka-Skrzypczak
Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie
Wydział Medyczny
Katedra Biologii Medycznej i Badań Translacyjnych
ul. Sucharskiego 2, 35-225 Rzeszów
Med Srod. 2016;19(4):59-69
SŁOWA KLUCZOWE
STRESZCZENIE
Tlenek węgla (CO), niskocząsteczkowy, gazowy mediator o wielokierunkowej aktywności, powstaje w komórce w reakcji rozpadu cząsteczki hemu na skutek aktywności oksygenazy hemowej. Istnieje wiele doniesień naukowych potwierdzających udział tlenku węgla oraz oksygenazy hemowej w zintegrowanym systemie ochrony przed stresem komórkowym. Wykazano, że w układach biologicznych CO wykazuje działanie przeciwzapalne, anty-proliferacyjne oraz anty-apoptotyczne. Dokładniejsze poznanie funkcji tej cząsteczki doprowadziło do stopniowego wykorzystywania jej, jako potencjalnego terapeutyku w chorobach układu nerwowego, immunologicznego, krwionośnego a także w transplantologii. Celem niniejszej pracy, było przedstawienie roli tlenku węgla w modulacji procesów komórkowych, ze szczególnym uwzględnieniem potencjalnego zastosowania tej cząsteczki w farmakoterapii.
Carbon monoxide, a low molecular gaseous mediator with pleiotropic activity, arises as a result of heme degradation in reaction catalyzed by heme oxygenase. There are a variety of scientific reports confirming the participation of carbon monoxide and heme oxygenase in protection against cellular stress. It has been shown that in biological systems, CO can display anti-inflammatory, anti-proliferative and anti-apoptotic effect. A better understanding of the function of this molecule has led to its use as a potential therapeutic agent in diseases associated with neurological, immune and vascular systems and transplantology. The aim of this study was to present the role of carbon monoxide in modulation of cellular processes, with particular consideration of potential application in pharmacotherapy
REFERENCJE (77)
1.
Guzman J.A.: Carbon Monoxide Poisoning. Crit Care Clin 2012; 28(4): 537-548.
2.
Coburn R.F., Blakemore W.S., Forster R.E.: Endogenous Carbon Monoxide Production In Man. J Clin Invest 1963; 42(7): 1172-1178.
3.
Wu L., Wang R.: Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacol Rev 2005; 57(4): 585-630.
4.
Bilban M., Haschemi A., Wegiel B. i wsp.: Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol.
6.
Dulak J., Jóźkowicz A.. Carbon monoxide – a “new” gaseous modulator of gene expression. Acta Biochim Pol 2003; 50(1): 31-47.
7.
Vreman H.J., Wong R.J., Stevenson D.K.: Sources, sinks and measurement of carbon monoxide (w:) Wang R (ed.): Carbon monoxide and cardiovascular functions. CRC Press, Washington 2002: 45-65.
8.
Ryter S.W. Otterbein L.E.: Carbon monoxide in biology and medicine. BioEssays 2006; 26: 270-280.
9.
Bełtowski J., Jamroz A., Borkowska E.: Oksygenaza hemowa i tlenek węgla w fizjologii i patologii układu krążenia. Postep Hig Med Dosw 2004; 58: 83-99.
10.
Kajimura M., Goda N., Suematsu M.: Organ design for generation and reception of CO: Lessons from the liver. Atiox Redox Signal 2002; 4: 633-637.
11.
Chau L.Y.: Heme oxygenase – 1: emerging target of cancer therapy. J Biomed Sci 2015; 22:22.
12.
Otterbein L.E., Choi A.M.K.: Heme oxygenase: colors of defense against cellular stress. Am J Psyhiol Lung Cell Mol Physiol 2000; 279: 1029-1037.
13.
Exner M., Minar E., Wagner O. i wsp.: The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 2004; 37: 1099-1104.
14.
Tadusiewicz J., Olas B.: Tlenek Azotu i Tlenek Węgla – Dwa Ważne Gazotransmitery. Kosmos 2014; 64(4): 543-554. Jasnos K., Magierowski M., Kwiecień S. i wsp.: Tlenek węgla w fizjologii organizmu człowieka – rola w układzie pokarmowym. Postep Hig Med Dosw 2014; 68: 101-109.
15.
Ingi T., Cheng J., Ronnett G.V.: Carbon Monoxide: An Endogenous Modulator of the Nitric Oxide – Cyclic GMP Signaling System. Neuron 1996; 16: 835-842.
16.
Thorup C., Jones C.L., Gross S.S. i wsp.: Carbon monoxide induces vasolidation and nitric oxide release but suppress endothelial NOS. Am J Physiol 1999; 277(6): 882-889.
17.
Wang R., Wang Z., Wu L.: Carbon monoxide – induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 1997; 121(5): 927-934.
18.
Durante W., Schafer A.I.: Carbon monoxide and vascular cell function. Int J Mol Med 1998; 2: 255-262.
19.
Morita T., Mitsialis S.A., Koike H. i wsp.: Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J Biol Chem 1997; 272: 32804-32809.
20.
Rochette L., Cottin Y., Zeller M. i wsp.: Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137(2): 133-152.
21.
Almeida A.S., Figueiredo-Pereira C., Vieira H.L.A.: Carbon monoxide and mitochondria – modulation of cell metabolism, redox response and cell death. Front Physiol 2015; 33(6).
22.
Zuckerbraun B.S., Chin B.Y., Bilban M. i wsp.: Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 2007; 21(4): 1099-1106.
23.
Ryter S.W., Morse D., Choi A.M.K.: Carbon monoxide and Bilirubin. Potential Therapies for Pulmonary/Vascular Injury and Disease. Am J Resp Cell Mol Biol 2007; 36: 175-182.
24.
Wang R., Wu L.: The chemical modification of KCa channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem 1997; 272: 8222-8226.
25.
Dallas M.L., Scragg J.L., Peers C.: Inhibition of L-type Ca(2+) channels by carbon monoxide. Adv Exp Med Biol 2009; 648, 89-95.
26.
Foresti R., Motterlini R.: The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radic Res 1999; 31: 459-475.
27.
Dioum E.M., Rutter J., Tuckerman J.R. i wsp.: NPAS2: a gasresponsive transcription factor. Science 2002; 298: 2385- 2387.
28.
Lee T.S., Chau L.Y.: Heme oxygenase-1 mediates the antiinflammatory effect of interleukin-10 in mice. Nat Med 2002; 8(3): 240-246.
29.
Otterbein L.E., Bach F.H., Alam J. i wsp.: Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nature 2000; 6(4): 422-428.
30.
Cuenda A., Rousseau S.: p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007; 1773(8): 1358-1375.
31.
Haschemi A., Chin B.Y., Jeitler M. i wsp.: Carbon Monoxide Induced PPAR
32.
Bilban M., Bach F.H., Otterbein S.L. i wsp.: Carbon Monoxide Orchestrates a Protective Response though PRAR
33.
Stępień A., Izdebska M., Grzanka A.: Rodzaje śmierci komórki. The types of cell death. Postep Hig Med Dosw 2007; 61: 420-428.
34.
Wang X., Wang Y., Kim H.P. i wsp.: Carbon Monoxide Protects against Hyperoxia-induced Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Formation. J Biol Chem 2007; 282(3): 1718-1726.
35.
Petrache I., Otterbein L.E., Alam J. i wsp.: Heme oxygenase- 1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol 2000; 278(2): 312-319.
36.
Brouard S., Otterbein L.E., Anrather J. i wsp.: Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. J Exp Med 2000; 192(7): 1015-1026.
37.
Zhang X., Shan P., Alam J. i wsp.: Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 2005; 280: 8714-21.
38.
Zhang X., Shan P., Alam J. i wsp.: Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J Biol Chem 2003; 278(24): 22061-22070.
39.
Wang X., Wang Y., Lee S.J. i wsp.: Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells. Med Gas Res 2011; 1: 8.
40.
Liu X.M., Chapman G.B., Peyton K.J. i wsp.: Carbon monoxide inhibits apoptosis in vascular smooth muscle cells. Cardiovasc Res 2002; 55(2): 396-405.
41.
Wąs H., Dulak J., Józkowicz A.: Heme oxygenase – 1 in Tumor Biology and Therapy. Curr Drug Targets 2010; 11: 1551- 1570.
42.
Kim H.P., Ryter S.W., Choi A.M.K.: CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 2006; 46: 411-449.
43.
Bai F.H., Qi N.N., Wu C.X. i wsp.: A New Insight into the Effect of Heme Oxygenase-1 in Progress of Malignant Tumors. J Gastroenterol Hepatol Res 2013; 2(1): 353-358.
44.
Durante W., Johnson F.K., Johnson R.A.: Role of carbon monoxide in cardiovascular function. J Cell Mol Med 2006; 10(3): 672-686.
45.
Józkowicz A., Wąs H., Dulak J.: Heme Oxygenase – 1 in Tumors: Is a False Friend?. Antioxid Redox Signal 2007; 9(12): 2099-2117.
46.
Kim H.P., Wang X., Nakao A. i wsp.: Caveolin-1 expression by means of p38
47.
Dallas M.L., Boyle J.P., Milligan C.J. i wsp.: Carbon monoxide protects against oxidant-induced apoptosis via inhibition of Kv2. FASEB J 2011; 25: 1519 1530.
48.
Wu L, Wang R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacol Rev 2005; 57:585-630.
49.
Mahan V.L.: Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide. Med Gas Res 2012; 2: 32.
50.
Almeida A.S., Queiroga C.S., Sousa M.F. i wsp.: Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: role of Bcl-2. J Biol Chem 2012; 287(14): 10761-10770.
51.
Zeynalov E., Doré S.: Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res 2009; 15(2): 133-137.
52.
Mahan V.L., Zurakowski D., Otterbein L.E. i wsp.: Inhaled carbon monoxide provides cerebral cytoprotection in pigs. PLoS One 2012; 7:e41982.
53.
Foresti R., Bani-Hani M.G., Motterlini R.: Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 2008, 34: 649-658.
54.
McInnes I.B., Schett G.: The pathogenesis of Rheumatoid Arthritis. N Engl J Med 2011; 365: 2205-2219.
55.
Hansson G.K., Libby P., Schonbeck U. i wsp.: Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis. Circ Res 2002, 91: 281-291.
56.
McGeer P.L., McGeer E.G.: Inflammation, autotoxicity an Alzheimer disease. Neurobiol Aging 2001; 22(6): 799-801.
57.
Hanauer S.B.: Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006; 12: 3-9.
58.
Rocha P.N., Plumb T.J., Crowley S.D. i wsp.: Effector mechanisms in transplant rejection. Immunol Rev 2003; 196(1): 51-64.
59.
Frank A.D., Wagener T.G., Volk H.D. i wsp.: Different Faces of the Heme-Heme Oxygenase System in Inflammation. Pharmacol Rev 2003; 55(3): 551-571.
60.
Pamplona A., Ferreira A., Balla J. i wsp.: Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nature 2007; 13(9): 703-710.
61.
Otterbein L.E., Mantell L.L., Choi A.M.K.: Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol 1999; 276(4): 688-694.
62.
Chauveau C., Bouchet D., Roussel J.C. i wsp.: Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transplant 2002; 2: 581-592.
63.
Neto J.S., Nakao A., Toyokawa H. i wsp.: Low-dose carbon monoxide inhalation prevents development of chronic allograft nephropathy. Am J Physiol Renal Physiol 2006; 290: 324-334.
64.
Ke B., Buelow R., Shen X.D. i wsp.: Heme oxygenase 1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway. Hum Gene Ther 2002; 13: 1189-1199.
65.
Song R., Kubo M., Morse D. i wsp.: Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Pathol 2003; 163: 231–42.
66.
Martins P.N., Reuzel-Selke A., Jurisch A. i wsp.: Induction of carbon monoxide in the donor reduces graft immunogenicity and chronic graft deterioration. Transplant Proc 2005; 37: 379-381.
67.
Ryter S.W., Choi A.M.K.: Carbon monoxide: present and future indications for a medical gas. Korean J Intern Med 2013; 28: 123-140.
68.
Nakao A., Choi A.M.K., Murase N.: Protective effect of carbon monoxide in transplantation. J Cell Mol Med 2006; 10(3): 650-671.
69.
Sato K., Balla J., Otterbein L. i wsp.: Carbon monoxide generated by heme oxygenase – 1 supresses the rejection of mouse – to – rat cardiac transplants. J Immunol 2001; 166: 4185-4194.
70.
Hangai-Hoger N., Tsai A.G., Cabrales P. i wsp.: Microvascular and systemic effects following top load administration of saturated carbon monoxide-saline solution. Crit Care Med 2007; 35:1123-1132.
71.
Bathoorn E., Slebos D.J., Postma D.S. Anti-inflammatory effects of inhaled carbon monoxide in patients with COPD: a pilot study. Eur Respir J 2007; 30(6): 1131-1137.
72.
Nakahira K., Choi A.M.K.: Carbon monoxide in the treatment of sepsis. Am J Physiol 2015; 309(12): 1387-1393.
73.
Mayr F.B., Spiel A., Leitner J. i wsp.: Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 2005; 171(4): 354-360.
75.
Song R., Kubo M., Morse D.: Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via antiinflammatory and anti-apoptotic effects. Am J Pathol 2003; 163: 231-242.
76.
Otterbein L.E., Zuckerbraun B.S., Haga M.: Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003; 9: 183-190.
77.
Song R., Mahidhara R.S., Liu F. i wsp.: Carbon Monoxide Inhibits Human Airway Smooth Muscle Cell Proliferation via Mitogen-Activated Protein Kinase Pathway. Am J Respir Cell Mol Biol 2002; 27: 603-610.