PL EN
LIST DO REDAKCJI
Wolne rodniki w dymie tytoniowym – metody analizy i znaczenie biomedyczne
 
Więcej
Ukryj
1
Zakład Szkodliwości Chemicznych i Toksykologii Genetycznej, Instytut Medycyny Pracy i Zdrowia Środowiskowego w Sosnowcu
 
2
Zakład Chemii Ogólnej i Nieorganicznej, Wydział Farmaceutyczny w Sosnowcu Śląski Uniwersytet Medyczny w Katowicach Kierownik Zakładu: prof. dr hab. n. med. A. Sobczak Dziekan Wydziału: dr hab. n. farm. S. Boryczka
 
3
Department of Health Behaviour Division of Cancer Prevention and Population Sciences Roswell Park Cancer Institute, Buffalo, USA prof. dr A. Hyland, PhD, dyrektor instytutu: prof. D. Trump, MD, FACP
 
 
Autor do korespondencji
Leon Kośmider
Instytut Medycyny Pracy i Zdrowia Środowiskowego ul. Kościelna 13, 41-200 Sosnowiec tel. 32 634 11 91
 
 
Med Srod. 2013;16(3):7-14
 
SŁOWA KLUCZOWE
STRESZCZENIE
Wolne rodniki – atomy lub grupy atomów, zawierające jeden lub więcej niesparowanych elektronów, są jednym z wielu czynników odpowiedzialnych za toksyczne właściwości dymu tytoniowego. Rodniki powstają w wyniku procesów spalania oraz procesów pirolizy, zachodzących w stożku żarzenia w trakcie wypalania papierosa. Niektóre rodniki występujące w dymie tytoniowym mają względnie długi okres półtrwania (ponad 5 min.). W niniejszej pracy omówiono nowoczesne metody analityczne służące do identyfikacji i ilościowej analizy wolnych rodników w próbkach dymu tytoniowego, ze szczególnym uwzględnieniem elektronowego rezonansu paramagnetycznego, w połączeniu z metodą pułapkowania spinowego. W pracy dokonano przeglądu istniejących poglądów na temat roli wolnych rodników w etiologii określonych chorób układu krążenia i układu oddechowego u palaczy, a także potencjalnych mechanizmów biochemicznych odpowiedzialnych za różne stany patologiczne (zaburzenia procesów peroksydacji lipidów, modyfikacje struktury i aktywności acylotransferazy lecytyna:cholesterol i poziomu lipoproteiny wysokiej gęstości, nadwrażliwość na substancję P i inaktywację obojętnej endopeptydazy).

Free radicals, i.e. atoms or groups of atoms containing one or more unpaired electrons, are significant constituents of tobacco smoke that contribute to its toxic properties. Radicals are generated during complex pyrolysis and combustion reactions in burning a cigarette cone. It has been shown that some free radicals found in tobacco smoke have relatively long half-time life (over 5 mins). We have reviewed modern analytical methods used for identification and quantitative analysis of free radicals in tobacco smoke, particularly the electron paramagnetic resonance combined with a spin-trapping approach. We also discussed the role of free radicals in etiology of respiratory and cardiovascular conditions among smokers. Finally, we reviewed biochemical mechanisms of various pathological conditions, including disturbances in lipid peroxidation, activity modification of lecithin-cholesterol acyltransferase and level high density lipoprotein, hyperactivity to substance P, and inactivation of neutral endopeptidase, that are thought to be contributed by free radicals from tobacco smoke.
 
REFERENCJE (23)
1.
WHO REPORT on the global TOBACCO epidemic. MPOWER. Brazil: World Health Organization, 2008: 1-342.
 
2.
Scott W.K., Zhang F., Stajich J.M.i wsp.: Family-based casecontrol study of cigarette smoking and Parkinson disease. Neurology 2005; 64: 442-447.
 
3.
Sabbagh M.N., Tyas S.L., Emery S.C.i wsp.: Smoking affects the phenotype of Alzheimer disease. Neurology 2005; 64: 1301-1303.
 
4.
Connelly N.G., Royal Society of Chemistry (Great Britain), International Union of Pure and Applied Chemistry. Nomenclature of inorganic chemistry. IUPAC recommendations 2005. Cambridge, UK: Royal Society of Chemistry Publishing/ IUPAC, 2005: 1-377.
 
5.
Nieorganicznej P.T.C.K.N.C. Nomenklatura chemii nieorganicznej. Zalecenia 1990. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego, 1998: 1-377.
 
6.
Feierman D.E., Winston G.W., Cederbaum A.I.: Ethanol Oxidation by Hydroxyl Radicals: Role of Iron Chelates, Superoxide, and Hydrogen Peroxide. Alcohol Clin Exp Res 1985; 9: 95-102.
 
7.
Harper’s illustrated biochemistry. New York: Lange Medical Books/McGraw-Hill, 2003; 746.
 
8.
Pryor W.A., Tamura M., Church D.F.: Electron-Spin-Resonance Spin-Trapping Study of the Radicals Produced in Nox Olefin Reactions - a Mechanism for the Production of the Apparently Long-Lived Radicals in Gas-Phase Cigarette-Smoke. J Am Chem Soc 1984; 106: 5073-5079.
 
9.
Flicker T.M., Green S.A.: Detection and separation of gasphase carbon-centered radicals from cigarette smoke and diesel exhaust. Anal Chem 1998; 70: 2008-2012.
 
10.
Perfetti T.A. Rodgman A.: The Complexity of Tobacco and Tobacco Smoke. Beiträge zur Tabakforschung International 2011; 24: 215-232.
 
11.
Weil J.A., Bolton J.R.: Electron paramagnetic resonance: elementary theory and practical applications. 2nd ed. / John A. Weil, James R. Bolton. ed. Hoboken, N.J.: Wiley Chichester, John Wiley, 2007: 1-687.
 
12.
Church D.F.: Spin Trapping Organic Radicals. Anal Chem 1994; 66: 418A-427A.
 
13.
Johnson C.G., Caron S., Blough N.V.: Combined Liquid Chromatography/ Mass Spectrometry of the Radical Adducts of a Fluorescamine-Derivatized Nitroxide. Anal Chem 1996; 68: 867-872.
 
14.
Bohne C., Faulhaber K., Giese B. i wsp.: Studies on the Mechanism of the Photo-Induced DNA Damage in the Presence of.
 
15.
Acridizinium SaltsInvolvement of Singlet Oxygen and an Unusual Source for Hydroxyl Radicals. J Am Chem Soc 2004; 127: 76-85.
 
16.
Florek E., Ignatowicz E., Piekoszewski W. i wsp.: Tobacco smoke effects the activity of superoxide dismutase, glutathione peroxidase and total antioxidant status in pregnant and non-pregnant animals. Przegl Lek 2004; 61: 1104-1108.
 
17.
Culcasi M., Muller A., Mercier A.i wsp.: Early specific free radical-related cytotoxicity of gas phase cigarette smoke and its paradoxical temporary inhibition by tar: An electron paramagnetic resonance study with the spin trap DEPMPO. Chem Biol Interact 2006; 164: 215-231. Huang M.F., Lin W.L., Ma Y.C.: A study of reactive oxygen species in mainstream of cigarette. Indoor Air 2005; 15: 135- 140.
 
18.
Dusser D.J., Djokic T.D., Borson D.B.i wsp.: Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals. J Clin Invest. 1989; 84: 900-906.
 
19.
McCall M.R., van den Berg J.J., Kuypers F.A. i wsp.: Modification of LCAT activity and HDL structure. New links between cigarette smoke and coronary heart disease risk. Arterioscler Thromb Vasc Biol 1994; 14: 248-253.
 
20.
Mays B.W., Freischlag J.A., Eginton M.T. i wsp.: Ascorbic Acid Prevents Cigarette Smoke Injury to Endothelium-Dependent Arterial Relaxation. J Surg Res 1999; 84: 35-39.
 
21.
Deliconstantinos G., Villiotou V., Stavrides J C.: Scavenging effects of hemoglobin and related heme containing compounds on nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke. A new method for protection against the dangerous cigarette constituents. Anticancer Res 1994; 14: 2717-2726.
 
22.
Zhang D., Tao Y., Gao J. i wsp.: Pycnogenol® in cigarette filters scavenges free radicals and reduces mutagenicity and toxicity of tobacco smoke in vivo. Toxicol Ind Health 2002; 18: 215-224.
 
23.
Lu X., Hua Z., Du G. i wsp.: Scavenging of free radicals in gas-phase mainstream cigarette smoke by immobilized catalase at filter level. Free Radic Res 2008; 42: 244-252.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top