PL EN
RESEARCH PAPER
The effects of exposure time and fluorine concentration on cell homeostasis
 
More details
Hide details
1
Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, Katedra i Zakład Żywności i Żywienia. Kierownik: dr hab. K. Pawłowska-Góral
 
 
Corresponding author
Ewa Kurzeja   

Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach, Katedra i Zakład Żywności i Żywienia 41-200 Sosnowiec, ul. Jedności 8 tel. 323641170
 
 
Med Srod. 2015;18(3):12-16
 
KEYWORDS
ABSTRACT
Introduction:
The fluorine content in food depends on the presence of its compounds in water, soil and air. Owing to the high activity of the fluoride ion and its significant affinity to divalent metals, which are co-factors of many enzymes, changes in the activity of these enzymes may take place, resulting, among other things, in ATP concentration changes and free radical generation. The aim of this work was to assess the effects of length of exposure and fluorine concentration on culture growth, fibroblast energy homeostasis and the production of nitricoxide.

Material and Methods:
The research was conducted on fibroblasts isolated by means of mouse skin tissue explants from the tail and abdomen, BALB/c strain. The culture was bred with added sodium fluoride of final concentration of: 0.03 mmol/l; 0.06 mmol/l and 0.12 mmol/l. The culture growth time was: 1, 3 and 6 days. The culture growth indicator (N/N 0 ) was determined, as well as the ATP concentration and the amount of nitric oxide(II) released into the medium. The results obtained were cal- culated for 1 2 10 6 cells.

Results:
The highest values of the growth indicator, ATP concentration and nitric oxide were found in control cultures. The results obtained suggest that the presence of fluoride ions inhibits fibroblast culture growth, decreases ATP synthesis and lowers nitric oxide(II) production. The changes depend on the concentration of fluoride and the time of cell culture cultivation.

Conclusions:
Long-term exposure even to low fluoride concentrations disturbs cell homeostasis.

 
REFERENCES (22)
1.
Gazzano E., Bergandi L., Riganti C. i wsp.: Fluoride effects: the two faces of janus. Curr Med Chem 2010; 17(22): 2431-2441.
 
2.
Tenuta L.M., Cury J.A.: Fluoride: its role in dentistry. Braz Oral Res 2010; (24): 9-17.
 
3.
Jarosz M. (red): Normy Żywienia dla populacji polskiej – nowelizacja. IŻŻ Warszawa 2012: 140.
 
4.
Dhar V., Bhatnagar M.: Physiology and toxicity fluoride. Indian J Dent Res 2009; 20: 350-355.
 
5.
Malinowska E., Inkielewicz I., Czarnowski W. i wsp.: Assessment of fluoride concentration and daily intake by human from tea and herbal infusions. Food Chem Toxicol 2008;(46): 1055–1061.
 
6.
Wen D., Zhang F., Zhang E. i wsp.: Arsenic, fluoride and iodine in groundwater of China. Journal of Geochemical Exploration 2013; (135): 1–21.
 
7.
Reddy G.B.: Fluoride toxicity and oxidative stress. Fluoride 2004; 37: 43-44.
 
8.
Philips D.J.: Dye exclusion test for cell viability, in: tissue, culture, methods and application. Acad Press 1978; 406-408.
 
9.
Kangas L., Gronroos M., Nieminen A.L.: Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med Biol 1984; 62: 338–343.
 
10.
Duan X., Xu H., Wang Y., Wang H., Li G., Jing L.: Expression of core-binding factor 1 and osteocalcin in fluoride-treated fibroblasts and osteoblasts. Journal of Trace Elements in Medicine and Biology 2014; 28: 278–283.
 
11.
Hye-Jin L., Choong-Ho C.: Anti-inflammatory effects of bamboo salt and sodium fluoride in human gingival fibroblasts – An in vitro study. Kaohsiung J Med Sci 2015; 31: 303-308.
 
12.
Machoy Z.: Wpływ związków fluoru na łańcuch oddechowy. Bromat Chem Toksykol 1981; 24: 101-106.
 
13.
Adamek E., Pawłowska-Góral K., Bober K.: Wpływ jonów fluorkowych na aktywność enzymów w badaniach in vitro i in vivo. Ann Acad Med Stetin 2005; 51: 69-85.
 
14.
Dogan S., Gunay H., Leyhausen G., Geurtsen W.: Chemical biological interactions of NaF with three different cell lines and caries pathogen Streptococcus sobrinus. Clin Oral Investig 2002; 6: 92-97.
 
15.
Jeng J.H., Heiseh C.C., Lan M.C., Chang S.k., Lin S.J., Hahn L.J., Kuo M.Y.: Cytotoxicity od sodium fluoride on human oral mucosal fibroblasts and its mechanisms. Cell Biol Toxicol 1998; 14: 383-289.
 
16.
Jędra M., Urbanek-Karłowska B., Gawarska H., Sawilska-Rautenstrauch D.: Zawartość fluoru w napojach bezalkoholowych produkowanych w Polsce. Roczn. PZH 2006; 57:203–210.
 
17.
Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labeling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and the conditions for using ozoneenriched air for the treatment of natural mineral waters and spring waters. Off J European Union L 126/34, 22.05.2003.
 
18.
Lee J.H., Jung J.Y., Jeong Y.J., i wsp.: Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts. Toxicology 2008;243(3): 340-347.
 
19.
Gutowska I., Baranowsla-Bosiacka I., Baskiewicz M. i wsp.: Fluoride as a pro-inflammatory factor and inhibitor of ATP bioavailability in differentiated human TH1 monocytic cells. Toxicol Lett 2010; 196: 74–79.
 
20.
Hassan H.A., Abdel-Aziz A.F.: Evaluation of free radical-scavenging and anti-oxidant properties of black berry against fluoride toxicity in rats. Food Chem Toxicol 2010; 48: 1999-2004.
 
21.
Inkielewicz-Stępniak I., Czarnowski W.: Oxidative stress parameters in rats exposed to fluoride and caffeine. Food Chem Toxicol 2010; 48: 1607-1611.
 
22.
Pal S., Sarkar Ch.: Protective effect of resveratrol on fluoride induced alteration in protein and nucleic acid metabolism, DNA damage and biogenic amines in rat brain. Environ Toxicol Pharmacol 2014; 38: 684-699.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top