PL EN
PRACA POGLĄDOWA
Wpływ ołowiu na hematopoezę – współczesne poglądy
 
Więcej
Ukryj
1
Katedra i Zakład Farmakologii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach. Kierownik: dr hab. n. med. Natalia Pawlas
 
2
Katedra i Zakład Biochemii, Wydział Lekarski z Oddziałem Lekarsko-Dentystycznym w Zabrzu, Śląski Uniwersytet Medyczny w Katowicach. Kierownik: prof. dr hab. n. med. E. Birkner
 
 
Med Srod. 2018;21(4):39-43
 
SŁOWA KLUCZOWE
STRESZCZENIE
Ze względu na znaczne rozpowszechnienie związków ołowiu w środowisku człowieka możliwe są różne drogi dostawania się tego metalu do organizmu: przez układ oddechowy, skórę lub drogą pokarmową. Około 95% ołowiu krążącego we krwi znajduje się w erytrocytach gdzie zaburza ich prawidłowe funkcjonowanie. Ołów już w małych dawkach powoduje dyskretne zmiany czynnościowe i strukturalne, jego toksyczne działanie dotyczy przede wszystkim funkcjonowania układu nerwowego i krwiotwórczego. Mechanizmy toksyczności ołowiu są przedmiotem wielu badań. Jeden z głównych mechanizmów wynika z podobieństwa jonów ołowiu do jonów takich jak pierwiastków jak cynk czy wapń. Toksyczne działanie ołowiu na układ krwiotwórczy wiąże się przede wszystkim z hamującym wpływem tego pierwiastka na biosyntezę hemu poprzez inaktywacje kluczowych enzymów szlaku – dehydratazę kwasu δ-aminolewulinowego (ALAD) oraz ferrochelataze. Wpływ ołowiu na stężenie erytropoetyny jest niejednoznaczny i w dużej mierze zależny od dawki i czasu ekspozycji na ten pierwiastek. Ołów nie tylko wpływa na funkcjonowanie erytrocytów, ale również na leukocyty, i to zarówno w warunkach in vitro, jak i in vivo. Immunotoksyczność związana z krótkotrwałą ekspozycją na ołów spowodowana jest przez częściową immunosupresję i deregulację układu odpornościowego co ma swoje odzwierciedlenie w spadku stężeń cytokin hematopoetycznych. Wydaje się, że czas ekspozycji i wielkość dawki narażenia na działanie ołowiu są kluczowe przy ocenie wpływu tego pierwiastka na hematopoezę

Due to the high prevalence of lead compounds in the human environment they can be different ways of getting out of this metal in the body: the respiratory system, skin, or oral route. About 95% of lead circulating in the blood is in erythrocytes where it interferes with their proper functioning. Lead already in small doses causes discreet functional and structural changes, its toxic action mainly affects the functioning of the nervous and hematopoietic systems. Toxicity mechanisms of lead are the subject of many studies. One of the main mechanisms results from the similarity of lead ions to ions such as elements such as zinc and calcium. Toxic effects of lead on the hematopoietic system are mainly associated with the inhibitory effect of this element on the biosynthesis of haem by the inactivation of key enzymes in the pathway – dehydratase δ-aminolevulinic acid (ALAD) and ferrochelataze. The effect of lead on the concentration of erythropoietin is ambiguous and depends to a large extent on the dose and time of exposure to this element. Lead not only affects the functioning of erythrocytes, but also leukocytes, both in vitro and in vivo. Immunotoxicity associated with short-term exposure to lead is caused by mpartial immunosuppression and deregulation of the immune system, which is reflected in the decrease in hematopoietic cytokines. It seems that the exposure time and dose of exposure to lead are key when assessing the impact of this element on hematopoiesis.
 
REFERENCJE (27)
1.
A. Krzywy, Inga; Krzywy, Edward; Pastuszak-Gabinowska, Magdalena; Brodkiewicz, Ołów – czy jest się czego obawiać, Ann. Acad. Medicae Stetin. Rocz. Pomor. Akad. Med. W Szczecinie. 56 (2010) 118–128.
 
2.
L. Patrick, Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment., Altern. Med. Rev. 11 (2006) 2–22. http://www.ncbi.nlm.nih.gov/pu... 190 (accessed June 4, 2018).
 
3.
H.A. Godwin, The biological chemistry of lead., Curr. Opin. Chem. Biol. 5 (2001) 223–7. http://www.ncbi.nlm.nih.gov/ pubmed/ 11282351 (accessed June 12, 2018).
 
4.
L. Shimoni-Livny, J.P. Glusker, C.W. Bock, Lone Pair Functionality in Divalent Lead Compounds, (1998). doi: 10.1021/IC970909R.
 
5.
J. Giel-Pietraszuk, Małgorzata; Hybzda, Karolina; Chełchowska, Magdalena; Barciszewski, Mechanizmy toksyczności ołowiu., Postępy Biol. Komórki. 39 (2012) 217–248.
 
6.
E.K. Silbergeld, M. Waalkes, J.M. Rice, Lead as a carcinogen: experimental evidence and mechanisms of action., Am. J. Ind. Med. 38 (2000) 316–23. http://www.ncbi.nlm.nih.gov/ pubmed/10940970 (accessed June 4, 2018).
 
7.
M. Dobrakowski, M. Boroń, Z.P. Czuba, E. Birkner, A. Chwalba, E. Hudziec, S. Kasperczyk, Blood morphology and the levels of selected cytokines related to hematopoiesis in occupational short-term exposure to lead, Toxicol. Appl. Pharmacol. 305 (2016) 111–117. doi:10.1016/J.TAAP. 2016.06.015.
 
8.
W.-H. Jang, K.-M. Lim, K. Kim, J.-Y. Noh, S. Kang, Y.-K. Chang, J.-H. Chung, Low Level of Lead Can Induce Phosphatidylserine Exposure and Erythrophagocytosis: A New Mechanism Underlying Lead-Associated Anemia, Toxicol. Sci. 122 (2011) 177–184. doi:10.1093/toxsci/kfr079.
 
9.
M.J. Warren, J.B. Cooper, S.P. Wood, P.M. Shoolingin-Jordan, Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase., Trends Biochem. Sci. 23 (1998) 217–21. http://www.ncbi.nlm.nih.gov/pu... (accessed June 12, 2018).
 
10.
J.S. Magyar, T.-C. Weng, C.M. Stern, D.F. Dye, B.W. Rous, J.C. Payne, B.M. Bridgewater, A. Mijovilovich, G. Parkin, J.M. Zaleski, J.E. Penner-Hahn, H.A. Godwin, Reexamination of lead(II) coordination preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning., J. Am.Chem. Soc. 127 (2005) 9495–505. doi:10.1021/ja0424530
 
11.
E.K. Jaffe, J. Martins, J. Li, J. Kervinen, R.L. Dunbrack, The molecular mechanism of lead inhibition of human porphobilinogen synthase., J. Biol. Chem. 276 (2001) 1531–7. doi:10.1074/jbc.M007663200.
 
12.
T. Sakai, Y. Morita, delta-Aminolevulinic acid in plasma or whole blood as a sensitive indicator of lead effects, and its relation to the other heme-related parameters., Int. Arch. Occup. Environ. Health. 68 (1996) 126–32. http:// www.ncbi.nlm.nih.gov/pubmed/8720283 (accessed June 16, 2018).
 
13.
S.S. Lee, B.K. Lee, G.S. Lee, W.F. Stewart, D. Simon, K. Kelsey, A.C. Todd, B.S. Schwartz, Associations of lead biomarkers and delta-aminolevulinic acid dehydratase and vitamin D receptor genotypes with hematopoietic outcomes in Korean lead workers., Scand. J. Work. Environ. Health. 27 (2001) 402–11. doi:10.5271/sjweh.633. M.J. Haider, N. Qureshi, Studies on battery repair and recycling workers occupationally exposed to lead in Karachi., Rocz. Panstw. Zakl. Hig. 64 (2013) 37–42. http:// www.ncbi.nlm.nih.gov/pubmed/23789311 (accessed June 17, 2018).
 
14.
X. Lin, X. Tan, L. Wu, P. Chen, [Changes in peripheral hemogram among workers with short-term lead exposure]., Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 31 (2013) 595–7. http://www.ncbi.nlm.nih.gov/pu... 24053960 (accessed June 17, 2018).
 
15.
H. Wan, J. Wu, P. Sun, Y. Yang, Investigation of delta-aminolevulinic acid dehydratase polymorphism affecting hematopoietic, hepatic and renal toxicity from lead in Han subjects of southwestern China., Acta Physiol. Hung. 101 (2014) 59–66. doi:10.1556/APhysiol.101.2014.1.7. G. Snopek, A. Popielarz-Grygalewicz, M. Dąbrowski, Erytropoetyna – czy nowe perspektywy w leczeniu niewydolności serca? Erythropoietin: New perspectives in treating.
 
16.
cardiac insuffi ciency?, (n.d.). http://www.phmd.pl/api/files/ view/1898.pdf (accessed June 17, 2018).
 
17.
S. Sakata, S. Shimizu, K. Ogoshi, K. Hirai, Y. Ohno, T. Kishi, J.B. Sherchand, M. Utsumi, M. Shibata, M. Takaki, M. Ueda, I. Mori, Inverse relationship between serum erythropoietin and blood lead concentrations in Kathmandu tricycle taxi drivers, Int. Arch. Occup. Environ. Health. 80 (2007) 342– 345. doi:10.1007/s00420-006-0125-4.
 
18.
R. Romeo, C. Aprea, P. Boccalon, D. Orsi, B. Porcelli, P. Sartorelli, Serum erythropoietin and blood lead concentrations., Int. Arch. Occup. Environ. Health. 69 (1996) 73–5. http://www.ncbi.nlm.nih.gov/pu... (accessed June 17, 2018).
 
19.
R. Liberatori, R. Romeo, B. Porcelli, L. Barabesi, P. Sartorelli, Erythropoiesis, erythropoietin and blood lead levels., G. Ital. Med. Lav. Ergon. 33 (n.d.) 37 40. http://www.ncbi.nlm.nih. gov/pubmed/21417137 (accessed June 17, 2018).
 
20.
Y. Heo, P.J. Parsons, D.A. Lawrence, Lead Differentially Modifies Cytokine Productionin Vitroandin Vivo, Toxicol. Appl. Pharmacol. 138 (1996) 149–157. doi:10.1006/taap.1996. 0108.
 
21.
A. Jorissen, L.M. Plum, L. Rink, H. Haase, Impact of lead and mercuric ions on the interleukin-2-dependent proliferation and survival of T cells, Arch. Toxicol. 87 (2013) 249– 258. doi:10.1007/s00204-012-0926-z.
 
22.
J. Kasten-Jolly, Y. Heo, D.A. Lawrence, Impact of developmental lead exposure on splenic factors., Toxicol. Appl.
 
23.
Pharmacol. 247 (2010) 105–15. doi:10.1016/j.taap. 2010.06.003.
 
24.
A. Chwalba, B. Maksym, M. Dobrakowski, S. Kasperczyk, N. Pawlas, E. Birkner, A. Kasperczyk, The effect of occupational chronic lead exposure on the complete blood count and the levels of selected hematopoietic cytokines, Toxicol. Appl. Pharmacol. (2018). doi:10.1016/j.taap.2018.05.034.
 
25.
Y. Dai, X. Huo, Y. Zhang, T. Yang, M. Li, X. Xu, Elevated lead levels and changes in blood morphology and erythrocyte CR1 in preschool children from an e-waste area., Sci. Total Environ. 592 (2017) 51–59. doi:10.1016/j.scitotenv. 2017.03.080.
 
26.
M. Ahamed, M.J. Akhtar, S. Verma, A. Kumar, M.K.J. Siddiqui, Environmental lead exposure as a risk for childhood aplastic anemia., Biosci. Trends. 5 (2011) 38–43 http://www.ncbi.nlm.nih.gov/pu... (accessed June 17, 2018).
 
27.
C. Liu, X. Huo, P. Lin, Y. Zhang, W. Li, X. Xu, Association between blood erythrocyte lead concentrations and hemoglobin levels in preschool children, Environ. Sci. Pollut. Res. 22 (2015) 9233–9240. doi:10.1007/s11356-014-3992-3.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top