PRACA POGLĄDOWA
Zaburzenia snu u młodych osób spowodowane korzystaniem z urządzeń emitujących światło niebieskie – praca poglądowa
Więcej
Ukryj
1
Samodzielny Publiczny Specjalistyczny Szpital Zachodni im. Św. Jana Pawła II, Grodzisk Mazowiecki, Polska
2
Szpital Praski pw. Przemienienia Pańskiego, Warszawa, Polska
3
Wojskowy Instytut Medyczny – Państwowy Instytut Badawczy, Warszawa, Polska
4
Wojewódzki Szpital Specjalistyczny im. św. Rafała w Czerwonej Górze, Polska
5
Uniwersyteckie Centrum Kliniczne, Gdańsk, Polska
Autor do korespondencji
Ewa Gacoń
Szpital Praski p.w. Przemienienia Pańskiego
Med Srod. 2023;26(3-4):53-59
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Wprowadzenie i cel:
We współczesnym świecie korzystanie z urządzeń elektronicznych stało się nieodłącznym elementem codziennego życia. Konsekwencją tego jest zarówno długotrwały stan ciągłej gotowości z uwagi na pojawiające się powiadomienia, jak i narażenie na światło niebieskie emitowane przez telefony, tablety oraz laptopy. Celem niniejszej pracy jest przedstawienie najnowszych doniesień naukowych na temat zaburzeń snu wśród małych dzieci, nastolatków i młodych dorosłych narażonych na długotrwałą ekspozycję na niebieskie światło.
Opis stanu wiedzy:
Długotrwały stan ciągłej gotowości może mieć wiele konsekwencji zdrowotnych. Są to zaburzenia psychiczne, takie jak chroniczny brak snu, zmęczenie, zaburzenia lękowe, bezsenność, depresja, oraz zaburzenia somatyczne – głównie zaburzenia rytmu okołodobowego, co może prowadzić do chorób sercowo-naczyniowych i chorób metabolicznych, w tym insulinooporności. Istotnym problemem jest również narażenie użytkowników urządzeń elektronicznych na światło niebieskie, co jest udowodnionym czynnikiem wpływającym na jakość snu i odpoczynku.
Podsumowanie:
Należy zwrócić uwagę na problem zwiększonej ekspozycji na niebieskie światło u młodych ludzi i konsekwencji jakie to może mieć dla ich rozwoju i funkcjonowania w przyszłości. Potrzebne są narzędzia, które pomogłyby zmniejszyć ryzyko potencjalnych następstw zdrowotnych tego zjawiska. Nadmierne korzystanie z urządzeń emitujących światło niebieskie nieustannie rośnie, ważną kwestią jest edukacja rodziców o skutkach nadużywania urządzeń elektronicznych przez ich dzieci.
Introduction and objective:
Nowadays, the use of electronic devices has become an integral part of daily life. The consequence of this is both a prolonged state of constant alertness due to emerging notifications and exposure to blue light emitted by phones, tablets and laptops. The purpose of this study is to present recent scientific reports on sleep disorders among young children, adolescents and young adults exposed to prolonged exposure to blue light.
Brief description of the state of knowledge:
A prolonged state of constant alertness can lead to many health consequences. These include mental disorders, such as chronic sleep deprivation, fatigue, insomnia, anxiety disorders, and depression, as well as somatic disorders, mainly disruption of circadian rhythms, which can result in cardiovascular disease, metabolic diseases, including insulin resistance. Exposure to blue light among users of electronic devices is also an important problem, which is a proven factor affecting the quality of sleep and rest.
Summary:
Attention should be paid to the problem of increased exposure to blue light in young people and consequences this may cause for their development and functioning in the future. Instruments are needed to help reduce the scale of the potential consequences of this exposure. As the phenomenon of excessive use of blue light-emitting devices is increasing year after year, it is important to educate parents about the consequences of their children's excessive use of electronic devices.
REFERENCJE (78)
1.
Situation of households in 2022 in the light of the household budget survey. Główny Urząd Statystyczny. Polish.
2.
Seton C, Fitzgerald DA. Chronic sleep deprivation in teenagers: Practical ways to help. Paediatr Respir Rev. 2021;40:73–79. doi:10.1016/j.prrv.2021.05.001.
3.
Harada T, Morikuni M, Yoshii S, et al. Sleep and Hypnosis 2002;4(3):149–153.
4.
Weaver E, Gradisar M, Dohnt H, et al. The effect of presleep video - game playing on adolescent sleep. J Clin Sleep Med. 2010;6(2):184–189. doi:10.5664/jcsm.27769.
5.
Levenson JC, Shensa A, Sidani JE, et al. The association between social media use and sleep disturbance among young adults. Prev Med. 2016;85:36–41. doi:10.1016/j.ypmed.2016.01.001.
6.
Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151–161. Published 2017 May 19. doi:10.2147/NSS.S134864.
7.
Petit A, Karila L, Estellat C, et al. Sleep disorders in Internet addiction. Presse Med. 2016;45(12 Pt 1):1170–1177. doi:10.1016/j.lpm.2016.04.025. French.
8.
Kohyama J. A newly proposed disease condition produced by light exposure during night: asynchronization. Brain Dev. 2009;31(4):255–273. doi:10.1016/j.braindev.2008.07.006.
9.
Trinko JR, Land BB, Solecki WB, et al. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption. eNeuro. 2016;3(2). doi:10.1523/ENEURO.0122-15.2016.
10.
Menon V, Kar SK, Suthar N, et al. Vitamin D and Depression: A Critical Appraisal of the Evidence and Future Directions. Indian J Psychol Med. 2020;42(1):11–21. doi:10.4103/IJPSYM.IJPSYM_160_19.
11.
Yang G, Cao J, Li Y, et al. Association Between Internet Addiction and the Risk of Musculoskeletal Pain in Chinese College Freshmen – A Cross-Sectional Study. Front Psychol. 2019;10:1959. doi:10.3389/fpsyg.2019.01959.
12.
Yoshimura M, Kitazawa M, Maeda Y, et al. Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology. Nat Sci Sleep. 2017;9:59–65. doi:10.2147/NSS.S123319.
13.
Touitou Y, Touitou D, Reinberg A. Disruption of adolescents' circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J Physiol Paris. 2016;110:467–479. doi:10.1016/j.jphysparis.2017.05.001.
14.
Heo JY, Kim K, Fava M, et al. Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison. J Psychiatr Res. 2017;87:61–70. doi:10.1016/j.jpsychires.2016.12.010.
15.
Gronli J, Byrkjedal IK, Bjorvatn B, et al. Reading from an iPad or from a book in bed: the impact on human sleep. A randomized controlled crossover trial. Sleep Med. 2016;21:86–92. doi:10.1016/j.sleep.2016.02.006.
16.
Rahman SA, St Hilaire MA, Lockley SW. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep. Physiol Behav. 2017;177:221–229. doi:10.1016/j.physbeh.2017.05.002.
17.
Rangtell FH, Ekstrand E, Rapp L, et al. Two hours of evening reading on a self-luminous tablet vs. reading a physical book does not alter sleep after daytime bright light exposure. Sleep Med. 2016;23:111–118. doi:10.1016/j.sleep.2016.06.016.
18.
Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106. doi:10.1016/j.lfs.2017.02.008.
19.
Bedrosian TA, Nelson RJ. Timing of light exposure affects mood and brain circuits. Transl Psychiatry. 2017;7(1):e1017. Published 2017 Jan 31. doi:10.1038/tp.2016.262.
20.
Bruni O, Sette S, Fontanesi L, et al. Technology Use and Sleep Quality in Preadolescence and Adolescence. J Clin Sleep Med. 2015;11(12):1433–1441. Published 2015 Dec 15. doi:10.5664/jcsm.5282.
21.
Clayton RB, Leshner G, Almond A. The extended iSelf: the impact of iPhone separation on cognition, emotion, and physiology. J Comp Mediat Communicat. 2015;20(2):119–135. doi:10.1111/jcc4.12109.
22.
Stothard ER, McHill AW, Depner CM, et al. Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr Biol. 2017;27(4):508–513. doi:10.1016/j.cub.2016.12.041.
23.
Burgess HJ, Molina TA. Home lighting before usual bedtime impacts circadian timing: a field study. Photochem Photobiol. 2014;90(3):723–6. doi:10.1111/php.12241.
24.
Gooley JJ, Chamberlain K, Smith KA, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463–72. doi:10.1210/jc.2010-2098.
25.
Brainard GC, Hanifin JP, Greeson JM, et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci. 2001;21(16):6405–12. doi:10.1523/JNEUROSCI.21-16-06405.2001.
26.
Lockley SW, Brainard GC, Czeisler CA. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab. 2003;88(9):4502–5. doi:10.1210/jc.2003-030570.
27.
Thapan K, Arendt J, Skene DJ. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol. 2001;535(Pt 1):261–7. doi:10.1111/j.1469-7793.2001.t01-1-00261.x.
28.
Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3. doi:10.1126/science.1067262.
29.
Provencio I, Rodriguez IR, Jiang G, et al. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–5. doi:10.1523/JNEUROSCI.20-02-00600.2000.
30.
Chellappa SL, Steiner R, Blattner P, et al. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One. 2011;6(1):e16429. doi:10.1371/journal.pone.0016429.
31.
Kraneburg A, Franke S, Methling R, et al. Effect of color temperature on melatonin production for illumination of working environments. Applied Ergonomics. 2017;58:446–53. doi:10.1016/j.apergo.2016.08.006.
32.
Kozaki T, Koga S, Toda N, et al. Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion. Neurosci Lett. 2008;439(3):256–9. doi:10.1016/j.neulet.2008.05.035.
33.
Brainard GC, Hanifin JP, Warfield B, et al. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. J Pineal Res. 2015;58(3):352–61. doi:10.1111/jpi.12221.
34.
Lasauskaite R, Cajochen C. Influence of lighting color temperature on effort-related cardiac response. Biol Psychol. 2018;132:64–70. doi:10.1016/j.biopsycho.2017.11.005.
35.
Lee SI, Matsumori K, Nishimura K, et al. Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night. Physiol Rep. 2018;6(24):e13942. doi:10.14814/phy2.13942.
36.
Higuchi S, Lin Y, Qiu J, et al. Is the use of high correlated color temperature light at night related to delay of sleep timing in university students? A cross-country study in Japan and China. J Physiol Anthropol. 2021;40,7. doi:10.1186/s40101-021-00257-x.
37.
Roenneberg T, Allebrandt KV, Merrow M, et al. Social jetlag and obesity. Curr Biol. 2012;22(10):939–43. doi:10.1016/j.cub.2012.03.038.
38.
Van der Maren S, Moderie C, Duclos C, et al. Daily Profiles of Light Exposure and Evening Use of Light-emitting Devices in Young Adults Complaining of a Delayed Sleep Schedule. J Biol Rhythms. 2018;33(2):192–202. doi:10.1177/0748730418757007.
39.
Lewy AJ, Cutler NL, Sack RL. The endogenous melatonin profile as a marker for circadian phase position. J Biol Rhythms. 1999;14(3):227–236. doi:10.1177/074873099129000641.
40.
Pandi-Perumal SR, Smits M, et al. Dim light melatonin onset (DLMO): a tool for the analysis of circadian phase in human sleep and chronobiological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):1–11. doi:10.1016/j.pnpbp.2006.06.020.
41.
Goulet G, Mongrain V, Desrosiers C, et al. Daily light exposure in morning-type and evening-type individuals. J Biol Rhythms. 2007;22(2):151–158. doi:10.1177/0748730406297780.
42.
Joo EY, Abbott SM, Reid KJ, et al. Timing of light exposure and activity in adults with delayed sleep-wake phase disorder. Sleep Med. 2017;32:259–265. doi:10.1016/j.sleep.2016.09.009.
43.
Cajochen C, Frey S, Anders D, et al. Evening exposure to a light-emitting diodes (LED) – backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol (1985). 2011;110(5):1432–1438. doi:10.1152/japplphysiol.00165.2011.
44.
Ishizawa M, Uchiumi T, Takahata M, et al. Effects of pre-bedtime blue-light exposure on ratio of deep sleep in healthy young men. Sleep Med. 2021;84:303–307. doi:10.1016/j.sleep.2021.05.046.
45.
Ahearne C, Dilworth S, Rollings R, et al. Touch-screen technology usage in toddlers. Arch Dis Child. 2016;101(2):181–183. doi:10.1136/archdischild-2015-309278.
46.
Kabali HK, Irigoyen MM, Nunez-Davis R, et al. Exposure and Use of Mobile Media Devices by Young Children. Pediatrics. 2015;136(6):1044–1050. doi:10.1542/peds.2015-2151.
47.
Chindamo S, Buja A, DeBattisti E, et al. Sleep and new media usage in toddlers. Eur J Pediatr. 2019;178(4):483–490. doi:10.1007/s00431-019-03318-7.
48.
Blair PS, Humphreys JS, Gringras P, et al. Childhood sleep duration and associated demographic characteristics in an English cohort. Sleep. 2012;35(3):353–360. doi:10.5665/sleep.1694.
49.
Mindell JA, Meltzer LJ, Carskadon MA, et al. Developmental aspects of sleep hygiene: findings from the 2004 National Sleep Foundation Sleep in America Poll. Sleep Med. 2009;10(7):771–779. doi:10.1016/j.sleep.2008.07.016.
50.
Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–43. doi:10.1016/j.sleh.2014.12.010.
51.
Paruthi S, Brooks LJ, D›Ambrosio C, et al. Recommended Amount of Sleep for Pediatric Populations: A Consensus Statement of the American Academy of Sleep Medicine. J Clin Sleep Med. 2016;12(6):785–786. doi:10.5664/jcsm.5866.
52.
Brambilla P, Giussani M, Pasinato A, et al. Sleep habits and pattern in 1–14 years old children and relationship with video devices use and evening and night child activities. Ital J Pediatr. 2017;43(1):7. doi:10.1186/s13052-016-0324-x.
53.
Cheung CH, Bedford R, Saez De Urabain IR, et al. Daily touchscreen use in infants and toddlers is associated with reduced sleep and delayed sleep onset. Sci Rep. 2017;7:46104. doi:10.1038/srep46104.
54.
Carter B, Rees P, Hale L, et al. Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2016;170(12):1202–1208. doi:10.1001/jamapediatrics.2016.2341.
55.
Day JJ, Roitman MF, Wightman RM, et al. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat Neurosci. 2007;10(8):1020–1028. doi:10.1038/nn1923.
56.
Huttenlocher PR. Neural plasticity: the effects of the environment on the development of the cerebral cortex. London: Harvard University Press; 2002.
57.
Radesky JS, Schumacher J, Zuckerman B. Mobile and interactive media use by young children: the good, the bad, and the unknown. Pediatrics. 2015;135(1):1–3. doi:10.1542/peds.2014-2251.
58.
Titova OE, Hogenkamp PS, Jacobsson JA, et al. Associations of self-reported sleep disturbance and duration with academic failure in community-dwelling Swedish adolescents: sleep and academic performance at school. Sleep Med. 2015;16(1):87–93. doi:10.1016/j.sleep.2014.09.004.
59.
Garrison MM, Liekweg K, Christakis DA. Media use and child sleep: the impact of content, timing, and environment. Pediatrics. 2011;128(1):29–35. doi:10.1542/peds.2010-3304.
60.
Council on Communications and Media. Media and Young Minds. Pediatrics. 2016;138(5):e20162591. doi:10.1542/peds.2016-2591.
61.
Restrepo A, Scheininger T, Clucas J, et al. Problematic internet use in children and adolescents: associations with psychiatric disorders and impairment. BMC Psychiatry. 2020;20(1):252. doi:10.1186/s12888-020-02640-x.
62.
Keles B, McCrae N, Grealish A. A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents. Int J Adolesc Youth. 2020;25:79–93. doi: 10.1080/02673843.2019.1590851.
63.
Saikia AM, Das J, Barman P, et al. Internet Addiction and its Relation-ships with Depression, Anxiety, and Stress in Urban Adolescents of Kamrup District, Assam. J Family Community Med. 2019;26(2):108–112. doi:10.4103/jfcm.JFCM_93_18.
64.
Tan Y, Chen Y, Lu Y, et al. Exploring Associations between Problematic Internet Use, Depressive Symptoms and Sleep Disturbance among Southern Chinese Adolescents. Int J Environ Res Public Health. 2016;13(3):313. doi:10.3390/ijerph13030313.
65.
Jain A, Sharma R, Gaur KL, et al. Study of internet addiction and its association with depression and insomnia in university students. J Family Med Prim Care. 2020;9(3):1700–1706. doi:10.4103/jfmpc.jfmpc_1178_19.
66.
Alimoradi Z, Lin CY, Broström A, et al. Internet addiction and sleep problems: A systematic review and meta-analysis. Sleep Med Rev. 2019;47:51–61. doi:10.1016/j.smrv.2019.06.004.
67.
Kokka I, Mourikis I, Nicolaides NC, et al. Exploring the Effects of Problematic Internet Use on Adolescent Sleep: A Systematic Review. Int J Environ Res Public Health. 2021;18(2):760. doi:10.3390/ijerph18020760.
68.
Van den Bulck J. Television viewing, computer game playing, and Internet use and self-reported time to bed and time out of bed in secondary-school children. Sleep. 2004;27(1):101–104. doi:10.1093/sleep/27.1.101.
69.
Do KY, Lee KS. Relationship between Problematic Internet Use, Sleep Problems, and Oral Health in Korean Adolescents: A National Survey. Int J Environ Res Public Health. 2018;15(9):1870. doi:10.3390/ijerph15091870.
70.
Younes F, Halawi G, Jabbour H, et al. Internet Addiction and Relationships with Insomnia, Anxiety, Depression, Stress and Self-Esteem in University Students: A Cross-Sectional Designed Study. PLoS One. 2016;11(9):e0161126. doi:10.1371/journal.pone.0161126.
71.
Fernández-Villa T, Alguacil Ojeda J, Almaraz Gómez A, et al. Problematic Internet Use in University Students: associated factors and differences of gender. Adicciones. 2015;27(4):265–275. Spanish.
72.
An J, Sun Y, Wan Y, et al. Associations between problematic internet use and adolescents› physical and psychological symptoms: possible role of sleep quality. J Addict Med. 2014;8(4):282–287. doi:10.1097/ADM.0000000000000026.
73.
Wang W, Du X, Guo Y, et al. Association between problematic internet use and behavioral/emotional problems among Chinese adolescents: the mediating role of sleep disorders. Peer J. 2021;9:e10839. doi:10.7717/peerj.10839.
74.
Tahir MJ, Malik NI, Ullah I, et al. Internet addiction and sleep quality among medical students during the COVID-19 pandemic: A multinational cross-sectional survey. PLoS One. 2021;16(11):e0259594. doi:10.1371/journal.pone.0259594.
75.
YDQIA Young’s Diagnostic Questionnaire for Internet Addiction. 2020.
76.
Jniene A, Errguig L, Hangouche AJ, et al. Perception of Sleep Disturbances due to Bedtime Use of Blue Light-Emitting Devices and Its Impact on Habits and Sleep Quality among Young Medical Students. Biomed Res Int. 2019;2019:7012350. doi:10.1155/2019/7012350.
77.
Tan Y, Chen Y, Lu Y, et al. Exploring Associations between Problematic Internet Use, Depressive Symptoms and Sleep Disturbance among Southern Chinese Adolescents. Int J Environ Res Public Health. 2016;13(3):313. doi:10.3390/ijerph1303031.
78.
Naskręcki R, Grzonka M. Blue Light Hazard, czyli czy i jak chronić się przed nadmiarem światła niebieskiego. Optyka. 2016; 3: 36–39.