PL EN
PRACA POGLĄDOWA
Zdrowotne skutki zanieczyszczenia środowiska arsenem
 
Więcej
Ukryj
1
Katedra i Klinika Chorób Wewnętrznych, Zawodowych i Nadciśnienia Tętniczego, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
 
2
Miedziowe Centrum Zdrowia S.A., Lubin
 
3
Katedra i Klinika Reumatologii i Chorób Wewnętrznych, Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu
 
 
Autor do korespondencji
Anna Skoczyńska   

Katedra i Klinika Chorób Wewnętrznych, Zawodowych i Nadciśnienia Tętniczego Uniwersytet Medyczny im. Piastów Śląskich we Wrocławiu ul. Borowska 213, 50-556 Wrocław
 
 
Med Srod. 2018;21(3):34-42
 
SŁOWA KLUCZOWE
STRESZCZENIE
Wstęp:
Stężenia arsenu w atmosferze są stosunkowo niskie, a udział drogi inhalacyjnej w całkowitej ekspozycji na arsen nie przekracza kilku procent. W skali globalnej podwyższone stężenia arsenu w powietrzu są rejestrowane w pobliżu antropogenicznych źródeł emisji, głównie hut miedzi. Większość przeprowadzanych tam badań dotyczy ekspozycji zawodowej, a nie pozazawodowej

Cel:
Celem opracowania jest przedstawienie zdrowotnych skutków zawodowego i pozazawodowego narażenia na arsen

Materiał i metody:
Korzystano z wybranych pozycji z bazy Pub-Med wyszukiwanych według słów kluczowych arsen-powietrze-toksyczne/rakotwórcze działanie arsenu i kombinacji tych słów.

Wyniki:
W latach 1977–2015 opublikowano wyniki 54 badań epidemiologicznych dotyczących wpływu arsenu na zdrowie populacji. Tylko w czterech z nich oceniano skutki inhalacji związków arsenu z podaniem wartości stężeń arsenu w powietrzu (0,5–21,6 mg/m3) i opisano zmiany, głównie w układzie oddechowym i układzie krążenia, u pracowników hut miedzi. Wykazano w nich zwiększoną śmiertelność z powodu raka płuc, chorób układu krążenia, nowotworów hematologicznych i marskości wątroby w porównaniu do populacji pracowników nienarażonych zawodowo na arsen. Ekspozycja środowiskowa na arsen pochodzący z powietrza (0,4–30 ng/m3) powoduje, że dawka 40–90 nanogramów arsenu dziennie jest wchłaniana przez człowieka drogą układu oddechowego. Na terenach czystych od zanieczyszczeń dawka ta wynosi 50 ng lub mniej. Skutkiem działania arsenu nawet w tych dawkach mogą być zmiany zapalne w układzie oddechowym, a także duszność i perforacja przegrody nosa. Odrębnym zagadnieniem jest rakotwórcze działanie arsenu.

Wnioski:
W populacjach narażonych na działanie arsenu emitowanego do środowiska przez przemysł miedziowy należy monitorować toksyczne i rakotwórcze skutki działania arsenu.


Introduction:
Arsenic air concentrations are relatively low and inhalation route plays only a minor role in the total exposure. On a global scale, elevated arsenic air concentrations are registered in proximity to anthropogenic emission sources, mainly copper mines. The majority of studies concern occupational exposure but not other types of exposure.

Aim:
The purpose of this study is to present health effects of occupational and non-occupational exposure to arsenic.

Material and Methods:
A Pub-Med database search has been performed, using keywords such as arsenic-air-toxicity/ carcinogenicity, and their combinations.

Results:
In the years 1977–2015, 54 epidemiologic eksstudies concerning arsenic effects on population health were published. Only in four of them were arsenic air concentrations (0.5–21.6 mg/m3) presented together with arsenic inhalation effects, mainly respiratory and cardiovascular changes in copper mines workers. An increased mortality due to lung cancer, cardiovascular diseases, hematologic cancers, and liver cirrhosis in comparison to workers not occupationally exposed to arsenic was shown. Environmental exposure to arsenic contained in air (at 0.4–30 ng/m3 concentrations) equals about 40–90 ng of arsenic inhaled daily by exposed humans. In areas free from pollution, the inhaled dose may be 50 ng and less. Exposure to arsenic even at such low doses may result in inflammation of the respiratory tract, dyspnea, and nasal septum perforation. Another issue is arsenic carcinogenicity

Conclusions:
In populations exposed to arsenic emitted by copper industry, toxic and carcinogenic arsenic effects should be monitored.

REFERENCJE (49)
1.
Inorganic emission from high-arsenic primary copper smelters. US Environmental Protection Agency,Office of Air Quality Planning and Standard Pollutant Assessment Branch, EPA contract number 68023513, Project Officer: WD Peters, 1982.
 
2.
Sheehy J.W. i Jones J.H.: Assessment of arsenic exposures and control in gallium arsenide production. Am Ind Hyg Assoc J 1993; 54: 61–69.
 
3.
Agency for Toxic Substances and Disease Registry. Toxicological profile for arsenic. Atlanta, GA, US Department of Health and Human Services, 2014.
 
4.
Brune D., Nordberg G., Wester P.O.: Distribution of 23 elements in the kidney, liver and lungs of workers from a smeltery and refinery in North Sweden exposed to a number of elements and of a control group. Sci Total Environ 1980; 16: 13-35
 
5.
Arsenic: Natural and Anthropogenic. Edited By Eleonora Deschamps, JörgMatschullat Chapter 2. Arsenic toxicology – A review (E.M. De Capitani), Ed. Taylor @ Francis Group, 1 ed., London, CRC Press, 2015.
 
6.
Health assessment document for inorganic arsenic. Research Triangle Park, NC, US EPA, 1984.
 
7.
Offergelt J.A. Roels H., Buchet J.P. i wsp.: Relation between airborne arsenic trioxide and urinary excretion of inorganic arsenic and its methylated metabolites. Br J Ind Med 1992; 49:387-393.
 
8.
Hughes M.F.: Arsenic toxicity and potential mechanisms of action. Toxicol Letters 2002; 133: 1-16.
 
9.
Kligerman A.D., Tennant A.H.: Insights into the carcinogenic mode of action of arsenic. Toxicol Appl Pharmacol 2007; 222: 281-8.
 
10.
Arsenic Air Quality Guidelines Second EditionWHO Regional Office for Europe, Copenhagen, Denmark, 2000.
 
11.
Jomova K., Jenisova Z., Feszterova M., i wsp.: Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 2011; 31: 95-107.
 
12.
Navas-Acien A., Guallar E.: Measuring Arsenic Exposure, Metabolism, and Biological Effects: The Role of Urine Proteomics Toxicol Sci 2008; 106: doi:10.1093/toxsci/kfn172.
 
13.
Orloff K., Mistry K., Metcalf S.: Biomonitoring for Environmental Exposures to Arsenic. J Toxicol Environ Health 2009; 12: 509-524.
 
14.
Banerjee M., Banerjee N., Ghosh P. i wsp.: Evaluation of the serum catalase and myeloperoxidase activities in chronic arsenic-exposed individuals and concomitant cytogenetic damage. Toxicol Appl Pharmacol 2010; 249: 47–54.
 
15.
Lamm S.H., Engel A., Penn C.A. i wsp.: Arsenic Cancer Risk Confounder in Southwest Taiwan Data Set. Environ Health Perspect 2006; 114: 1077-1082.
 
16.
Gamble M.V., Liu X., Slavkovich V. i wsp.: Folic acid supplementation lowers blood arsenic Am J Clin Nutr 2007; 86: 1202-1209.
 
17.
Deb D., Biswas A., Ghose A. i wsp.: Nutritional deficiency and arsenical manifestations: a perspective study in an arsenic- endemic region of West Bengal, India. Public Health Nutrition 2013; 16: 1644–1655.
 
18.
Rosado J.L., Ronquillo D., Kordas K. i wsp.: Arsenic Exposure and Cognitive Performance in Mexican Schoolchildren. Environ Health Perspect 2007; 115: 1371-375.
 
19.
Georgopoulos P.G., Wang S.W., Yang Y.C. i wsp.: Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic. J Exp Sci Environ Epidemiol 2008; 18: 462–476.
 
20.
Hoffman E., Mielicki W.P.: Trójtlenek arsenu: wpływ na procesy wzrostu i różnicowania komórek nowotworowych oraz możliwe zastosowanie w terapii choroby nowotworowej. Post Hig Med Dośw 2013; 67: 817–827.
 
21.
Izdebska M., Grzanka A., Szczepański M.A. i wsp.: Wybrane mechanizmy terapeutycznego oddziaływania trójtlenku arsenu w leczeniu nowotworów. Post Hig Med Dośw 2008; 62: 463–467.
 
22.
UK Teratology Information Service (UKTIS). Exposure to Arsenic in Pregnancy, 2012.
 
23.
Vahter M.: Health Effects of Early Life Exposure to Arsenic. Basic Clin Pharmacol Toxicol 2008; 102: 204–211.
 
24.
Binder S., Forney D., Kaye W. i wsp.: Arsenic Exposure in Children Living Near a Former Copper Smelter. Bull Environ ContamToxicol 1987; 39: 114-121.
 
25.
A Review of Human Carcinogens: Arsenic, Metals, Fibres, and Dusts, Arsenic and Arsenic Compounds, International Agency for Research on Cancer (IARC), Lyon, 2012.
 
26.
Steinmaus C.M., Ferreccio C., Romo J.A. i wsp.: Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev 2013; 22: 10.
 
27.
Environment Agency (EA). A review of the toxicity of arsenic in air. 2008.
 
28.
International Agency for Research on Cancer; IARC. A Review of Human Carcinogens: Arsenic, Metals, Fibres, and Dusts, Arsenic and Arsenic Compounds, 2012: Lyon.
 
29.
Wu B., Chen T.: Changes in hair arsenic concentration in a population exposed to heavy pollution: Follow-up investigation in Chenzhou City, Hunan Province, Southern China. J Environ Sci 2010; 22: 283–289.
 
30.
WHO, Series: 63, FAO JECFA Monogrpahs 8, Safety Evaluation of Certain Contaminants in Food, in Food Additives, 2011: Geneva and Rome
 
31.
Paul S., Giri A.K.: Epimutagenesis: A prospective mechanism to remediate arsenic-induced toxicity. Environ Int 2015; 81:8–17.
 
32.
Pinto S.S., Henderson V., Enterline P.E.: Mortality experience in relation to a measured arsenic trioxide exposure. Environ. Health Perspect 1977; 19: 127–130.
 
33.
Axelson O., Dahlgren E., Jansson C.D. i wsp.: Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter. Br J Ind Med 1978; 35: 8-15.
 
34.
Lee-Feldstein A.: Arsenic and respiratory cancer in humans: follow-up of copper smelter employees in arsenic. Am J Epidemiol 1989; 129: 112-124.
 
35.
Enterline P.E., Day, R., Mars, G.M.: Cancers related to exposure to arsenic at a copper smelter. Occup Environ Med 1995; 52: 28-32.
 
36.
Bhattacharjee P., Das N., Chatterjee D. i wsp.: Association of NALP2 polymorphism with arsenic induced skin lesions and other health effects. Mutat Res Toxicol Environ Mutagen 2013; 755: 1–5.
 
37.
Marapakala K., Packianathan C., Ajees, A. A. i wsp.: A disulfide-bond cascade mechanism for arsenic(III) S-adenosylmethionine. methyltransferase. Acta Crystallogr D Biol Crystallogr 2015; 71: 505–515.
 
38.
Nriagu L. B. J., Nriagu J.: Molecular Aspects of Arsenic Stress. J Toxicol Environ Heal Part B 2000; 3: 293–322.
 
39.
Flora S. J. S. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51: 257–281.
 
40.
Bhattacharjee P., Chatterjee D., Singh K.K. i wsp.: Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: An overview. Int J Hyg Environ Health 2013; 216: 574–586.
 
41.
Yang T.Y., Hsu L.I., Chiu A.W. i wsp. Comparison of genome- wide DNA methylation in urothelial carcinomas of patients with and without arsenic exposure. Environ Res 2014; 128: 57–63.
 
42.
Hsu W. L., Tsai M.H., Lin M.W., i wsp.: Differential effects of arsenic on calcium signaling in primary keratinocytes and malignant (HSC-1) cells. Cell Calcium 2012; 52: 161– 169.
 
43.
Ganapathy S., Li P., Fagman J. i wsp.: Low doses of arsenic, via perturbing p53, promotes tumorigenesis. Toxicol Appl Pharmacol 2016; 306: 98–104.
 
44.
Bhattacharjee P., Banerjee M., Giri, A. K.: Role of genomic instability in arsenic-induced carcinogenicity. A review. Environ Int 2013; 53: 29–40.
 
45.
Liu L-Z., Jiang Y., Carpenter L.R. i wsp.: Role and mechanism of arsenic in regulating angiogenesis. PLoS One 2011; 6(6): e20858. https://doi.org/10.1371/journa....
 
46.
Dong Z.: The molecular mechanisms of arsenic-induced cell transformation and apoptosis. Environ Health Perspect 2002; 110: Suppl 5: 757–759.
 
47.
Bode A. M., Dong Z.: The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit Rev Oncol Hematol 2002; 42: 5–24.
 
48.
Rehman K., Naranmandura H.: Double-edged effects of arsenic compounds: anticancer and carcinogenic effects. Curr Drug Metab 2013; 14: 1029–1041.
 
49.
Air quality in Europe – 2015 report. European Environment Agency. EEA Report No 5/2015http://www.eea.europa.eu/ publications/air-quality-in-europe-2015/download.
 
eISSN:2084-6312
ISSN:1505-7054
Journals System - logo
Scroll to top