REVIEW PAPER
Importance of gut microbiome in Alzheimer's disease
More details
Hide details
1
Collegium Medicum, Uniwersytet Jana Kochanowskiego w Kielcach, Polska
These authors had equal contribution to this work
Corresponding author
Małgorzata Agnieszka Wojtania
Collegium Medicum, Uniwersytet Jana Kochanowskiego w Kielcach, al. IX Wieków Kielc 19a, 25-516 Kielce, Kielce, Polska
Med Srod. 2024;27(2):60-65
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Alzheimer’s disease is the most common cause of dementia in the general population worldwide. At present, about 40 million people suffer from this disease and statistics predict that the number of patients will increase to over 100 million within 30 years. This is a serious problem in the healthcare system. Recently, researchers have shown increased interest in identifying protective factors against developing Alzheimer’s disease. This will help reduce the financial costs associated with the treatment of this disease. A relationship was observed between the intestinal microbiome and the risk of Alzheimer’s disease. The aim of this article is to provide information about this relationship based on the most recent scientific achievements.
Abbreviated description of the state of knowledge:
Disturbance of the interspecies balance in the intestinal microflora results in an increased risk of Alzheimer’s disease. This could be explained by inflammation and remodelling of brain blood vessels. Examination of the composition of intestinal microflora in stools might be helpful in the diagnosis of dementia. A new look at the intestinal microbiota in the development of Alzheimer’s disease has enabled alternative therapeutic options, including the supply of probiotics, prebiotics and synbiotics, which exert a positive effect on the intestinal bacterial flora.
Summary:
Despite numerous studies, information concerning intestinal microflora is still not used in daily clinical practice to diagnose Alzheimer’s disease. Further observations of gut microbiota are necessary. Perhaps in the future, expanding knowledge about the role of diet in the course of Alzheimer’s disease will revolutionize the treatment and prevention of this disease.
REFERENCES (50)
1.
C. P World Alzheimer report 2018. London: Alzheimer’s Disease International; 2018.
2.
Uysal G, Ozturk M. Hippocampal atrophy based Alzheimer's disease diagnosis via machine learning methods. J Neurosci Methods. 2020;337:108669. doi:10.1016/j.jneumeth.2020.108669.
3.
Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016;12(4):459–509. doi:10.1016/j.jalz.2016.03.001.
4.
Scheltens P, Blennow K, Breteler MM, et al. Alzheimer's disease. Lancet. 2016;388(10043):505–17. doi:10.1016/S0140-6736(15)01124-1.
5.
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer's disease and other dementias: a priority for European science and society. Lancet Neurol. 2016;15(5):455–532. doi:10.1016/S1474-4422(16)00062-4.
6.
Ezkurdia A, Ramírez MJ, Solas M. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance. Int J Mol Sci. 2023;24(5):4354. doi:10.3390/ijms24054354.
7.
Zhou J, Yu JT, Wang HF, et al. Association between stroke and Alzheimer's disease: systematic review and meta-analysis. J Alzheimers Dis. 2015;43(2):479–89. doi:10.3233/JAD-140666.
8.
Nordström A, Nordström P. Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLoS Med. 2018;15(1):e1002496. doi:10.1371/journal.pmed.1002496.
9.
Zhou F, Chen S. Hyperhomocysteinemia and risk of incident cognitive outcomes: An updated dose-response meta-analysis of prospective cohort studies. Ageing Res Rev. 2019;51:55–66. doi:10.1016/j.arr.2019.02.006.
10.
Kishimoto H, Ohara T, Hata J, et al. The long-term association between physical activity and risk of dementia in the community: the Hisayama Study. Eur J Epidemiol. 2016;31(3):267–74. doi:10.1007/s10654-016-0125-y.
11.
Wu L, Sun D, He Y. Coffee intake and the incident risk of cognitive disorders: A dose-response meta-analysis of nine prospective cohort studies. Clin Nutr. 2017;36(3):730–736. doi:10.1016/j.clnu.2016.05.015.
12.
Morris MC, Tangney CC, Wang Y, et al. MIND diet associated with reduced incidence of Alzheimer's disease. Alzheimers Dement. 2015;11(9):1007–14. doi:10.1016/j.jalz.2014.11.009.
13.
Matyas N, Keser Aschenberger F, Wagner G, et al. Continuing education for the prevention of mild cognitive impairment and Alzheimer's-type dementia: a systematic review and overview of systematic reviews. BMJ Open. 2019;9(7):e027719. doi:10.1136/bmjopen-2018-027719.
14.
Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–42. doi:10.1038/nrmicro2876.
15.
Kim SK, Guevarra RB, Kim YT, et al. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J Microbiol Biotechnol. 2019;29(9):1335–1340. doi:10.4014/jmb.1906.06064.
16.
Gałęcka M, Basińska A, Bartnicka A. Znaczenie mikrobioty jelitowej w kształtowaniu zdrowia człowieka – implikacje w praktyce lekarza rodzinnego Forum Medycyny Rodzinnej 2018;12(2):50–59, Via Medica 2018, ISSN1897-3590.
17.
Hasan A, Hasan LK, Schnabl B, et al. Microbiome of the Aerodigestive Tract in Health and Esophageal Disease. Dig Dis Sci. 2021;66(1):12–18. doi:10.1007/s10620-020-06720-6.
18.
Liu P, Wu L, Peng G, et al. Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633–643. doi:10.1016/j.bbi.2019.05.008.
19.
Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, et al. Impact of chronic Helicobacter pylori infection on Alzheimer's disease: preliminary results. Neurobiol Aging. 2012;33(5):1009.e11–9. doi:10.1016/j.neurobiolaging.2011.10.021.
20.
Chen SG, Stribinskis V, Rane MJ, et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci Rep. 2016;6:34477. doi:10.1038/srep34477.
21.
Pistollato F, Sumalla Cano S, Elio I, et al. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev. 2016;74(10):624–34. doi:10.1093/nutrit/nuw023.
22.
Jang SE, Lim SM, Jeong JJ, et al. Gastrointestinal inflammation by gut microbiota disturbance induces memory impairment in mice. Mucosal Immunol. 2018;11(2):369–379. doi:10.1038/mi.2017.49.
23.
Chen SG, Stribinskis V, Rane MJ, et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans. Sci Rep. 2016;6:3447.
24.
Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front Cell Infect Microbiol. 2017 Jul 11;7:318. doi:10.3389/fcimb.2017.00318.
25.
Ho L, Ono K, Tsuji M, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018;18(1):83–90. doi:10.1080/14737175.2018.1400909.
26.
Wu ML, Yang XQ, Xue L, et al. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice. Behav Brain Res. 2021;402:113125. doi:10.1016/j.bbr.2021.113125.
27.
Verhaar BJH, Hendriksen HMA, de Leeuw FA, et al. Gut Microbiota Composition Is Related to AD Pathology. Front Immunol. 2022;12:794519. doi:10.3389/fimmu.2021.794519.
28.
Sheng C, Lin L, Lin H, et al. Altered Gut Microbiota in Adults with Subjective Cognitive Decline: The SILCODE Study. J Alzheimers Dis. 2021;82(2):513–526. doi:10.3233/JAD-210259.
29.
Chen Y, Fang L, Chen S, et al. Gut Microbiome Alterations Precede Cerebral Amyloidosis and Microglial Pathology in a Mouse Model of Alzheimer›s Disease. Biomed Res Int. 2020;2020:8456596. doi:10.1155/2020/8456596.
30.
Sheng, Can et al. Combination of gut microbiota and plasma amyloid-β as a potential index for identifying preclinical Alzheimer's disease: a cross-sectional analysis from the SILCODE study. Alzheimer's Res Therapy 2022;14(1):35. doi:10.1186/s13195-022-00977-x.
31.
Li B, He Y, Ma J, et al. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimers Dement. 2019;15(10):1357–1366. doi:10.1016/j.jalz.2019.07.002.
32.
Angelucci F, Cechova K, Amlerova J, et al. Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation. 2019;16(1):108. doi:10.1186/s12974-019-1494-4.
33.
Matheson JT, Holsinger RMD. The Role of Fecal Microbiota Transplantation in the Treatment of Neurodegenerative Diseases: A Review. Int J Mol Sci. 2023;24(2):1001. doi:10.3390/ijms24021001.
34.
Mazziotta C, Tognon M, Martini F, et al. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells. 2023;12(1):184. doi:10.3390/cells12010184.
35.
Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimer's disease in transgenic mice: Role of microbiome. Exp Gerontol. 2019;115:122–131. doi:10.1016/j.exger.2018.12.005.
36.
Cao J, Amakye WK, Qi C, et al. Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer's disease in the APP/PS1 mouse model. Eur J Nutr. 2021;60(7):3757–3769. doi:10.1007/s00394-021-02543-x.
37.
Xiao J, Katsumata N, Bernier F, et al. Probiotic Bifidobacterium breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis. 2020;77(1):139–147. doi:10.3233/JAD-200488.
38.
Hsu, Yu-Chieh et al. Efficacy of Probiotic Supplements on Brain-Derived Neurotrophic Factor, Inflammatory Biomarkers, Oxidative Stress and Cognitive Function in Patients with Alzheimer's Dementia: A 12-Week Randomized, Double-Blind Active-Controlled Study. Nutrients 2023;16(1):16. doi:10.3390/nu16010016.
39.
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi:10.1038/nrgastro.2017.75.
40.
Liu Q, Xi Y, Wang Q, et al. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer's disease mouse model via regulating the gut microbiota-brain axis. Brain Behav Immun. 2021;95:330–343. doi:10.1016/j.bbi.2021.04.005.
41.
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression. Cell Res. 2019;29(10):787–803. doi:10.1038/s41422-019-0216-x.
42.
Ton, Alyne Mendonça Marques, et al. Oxidative Stress and Dementia in Alzheimer›s Patients: Effects of Synbiotic Supplementation. Oxidative Med Cell Longevity. 2020; 2638703. doi:10.1155/2020/2638703.
43.
Angelucci F, Cechova K, Amlerova J, et al. Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation. 2019;16(1):10.
44.
Yulug B, Hanoglu L, Ozansoy M, et al. Therapeutic role of rifampicin in Alzheimer›s disease. Psychiatry Clin Neurosci. 2018 Mar;72(3):152–159. doi:10.1111/pcn.12637.
45.
Park S, Zhang T, Wu X, et al. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer's disease rat model. J Clin Biochem Nutr. 2020;7(2):188–198. doi:10.3164/jcbn.19-87.
46.
Varesi A, Pierella E, Romeo M, et al. The Potential Role of Gut Microbiota in Alzheimer's Disease: From Diagnosis to Treatment. Nutrients. 2022;14(3):668. doi:10.3390/nu14030668.
47.
Anastasiou, Costas A, et al. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PloS One 2017;12:8 e0182048. doi:10.1371/journal.pone.0182048.
48.
Hosking, Diane E, et al. MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimer's Dementia: the journal of the Alzheimer's Association 2019;15(4):581–589. doi:10.1016/j.jalz.2018.12.011.
49.
Dodiya HB, Kuntz T, Shaik SM, et al. Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J Exp Med. 2019;216(7):1542–1560. doi:10.1084/jem.20182386.
50.
Sun J, Xu J, Ling Y, et al. Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiatry 2019;9:189.
https://doi.org/10.1038/s41398....